You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The primary goal of this text is pedagogical; providing a clear, logical, in-depth, and unifying treatment of many diverse aspects of modern nuclear theory ranging from the non-relativistic many-body problem to the standard model of the strong, electromagnetic, and weak interactions. Four key topics are emphasized in this text: basic nuclear structure, the relativistic nuclear many-body problem, strong-coupling QCD, and electroweak interactions with nuclei. The text is designed to provide graduate students with a basic level of understanding of modern nuclear physics so that they in turn can explore the scientific frontiers.
This textbook was written because the authors failed to find a comprehensive text for a course on non-relativistic nuclear reactions. The book combines a thorough theoretical approach with applications to recent experimental results. The main formalisms used to describe nuclear reactions areexplained clearly and coherently, and the reader is led from basic laws to the final formulae used to calculate measurable quantities. Topics treated include quantal and semi-classical potential scattering, the formal theory of nuclear reactions, including the theory of the optical model, anddirect reactions and coupled-channel systems. Also included are compound nucleus reactions and fusion, dissipation fluctuations in deep-inelastic collisions, fusion, and heavy-ion induced fission. The book will be welcomed by lecturers, graduate students, and researchers in nuclear and atomicphysics.
Giant resonances are collective excitations of the atomic nucleus, a typical quantum many-body system. The study of these fundamental modes has in many respects contributed to our understanding of the bulk behavior of the nucleus and of the dynamics of non-equilibrium excitations. Although the phenomenon of giant resonances has been known for more than 50 years, a large amount of information has been obtained in the last 10 years. This book gives an up-to-date, comprehensive account of our present knowledge of giant resonances. It presents the experimental facts and the techniques used to obtain that information, describes how these facts fit into theoretical concepts and how this allows to determine various nuclear properties which are otherwise difficult to obtain. Included as an introduction is an overview of the main facts, a short history of how the field has developed in the course of time, and a discussion of future perspectives.
This book is a useful and accessible introduction to symmetry principles in particle physics. Concepts of group theory are clearly explained and their applications to subnuclear physics brought up to date. The book begins with introductions to both the types of symmetries known in physics and to group theory and representation theory. Successive chapters deal with the symmetric groups and their Young diagrams, braid groups, Lie groups and algebras, Cartan's classification of semi-simple groups, and the Lie groups most used in physics are treated in detail. Gauge groups are discussed, and applications to elementary particle physics and multiquark systems introduced throughout the book where appropriate. Many worked examples are also included. There is a growing interest in the quark structure of hadrons and in theories of particle interactions based on the principle of gauge symmetries. Students and researchers on theoretical physics will make great strides in their work with the ideas and applications found here.
This textbook on nuclear structure takes a unique approach to the topic, explaining nuclear structure by building on a few elementary physical ideas. Intricate topics such as shell model residual interactions, the Nilsson model, and the RPA analysis of collective vibrations are explained in a simple, intuitive way so that predictions can usually be made without calculations, essentially by inspection. Frequent data comparison shows the relevance of theoretical approaches. New to this edition are chapters on exotic nuclei and radioactive beams,and correlations of collective observables. Completely new discussions are given on isopin, the shell model, nature of collective vibrations, multi- phonon states, superdeformation, bandmixing, the geometric collective model, the fermei gas model, basic properties of simple nuclear potentials, the deuteron, etc.
Suitable for undergraduate and graduate physics students, this unique textbook provides an ideal entry point into particle, nuclear, and astroparticle physics and presents the modern concepts, theories, and experiments that explain the elementary constituents and basic forces of the universe.--
Following the increasing cost of fossil fuels and concerns about the security of their future supply. However, the term 'nuclear power' causes anxiety in many people and there is confusion concerning the nature and extent of the associated risks.
In this Very Short Introduction Frank Close describes the historical development of nuclear physics, our understanding of the nucleus, how nuclei form, and the applications of the field in medicine. Exploring key concepts, Frank Close shows how nuclear physics brings the physics of the stars to Earth.
This handbook on basic nuclear properties and particle decay modes is the result of new theoretical and experimental data on nuclear properties; its aim is to combine the newest developments from advanced research laboratories with background information on such topics as masses, deformations, and energy conversion factors. These findings, along with the most recently updated tables, make this a valuable reference for researchers, practitioners, and students of nuclear and particle physics who are interested in basic nuclear properties.