You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This handbook provides comprehensive treatment of the current state of glass science from the leading experts in the field. Opening with an enlightening contribution on the history of glass, the volume is then divided into eight parts. The first part covers fundamental properties, from the current understanding of the thermodynamics of the amorphous state, kinetics, and linear and nonlinear optical properties through colors, photosensitivity, and chemical durability. The second part provides dedicated chapters on each individual glass type, covering traditional systems like silicates and other oxide systems, as well as novel hybrid amorphous materials and spin glasses. The third part feature...
Spectroscopy of the Earth's Atmosphere and Interstellar Medium focuses on the characteristics of the electromagnetic spectrum of the Earth's atmosphere in the far-infrared and microwave regions. It discusses the modes of observation in field measurements and reviews the two techniques used in the spectral region. Organized into six chapters, this volume begins with an overview of the effect of water-vapor absorption, followed by a discussion on the two frequently used method for deriving atmospheric parameters from high-resolution infrared atmospheric spectra, namely, the equivalent width (EW) technique and the nonlinear least-square fitting (NLSF). Other chapters consider the mechanisms by which interstellar clouds are formed. In addition, the book explores the composition of interstellar clouds, ion-molecule reactions, and the formation of stars. This book will be useful to anyone involved in, or interested in learning more about the field of atmospheric spectroscopy, including scientists, aeronomers, astronomers, astrophysicists, and students.
Atmospheric Water Vapor contains the technical proceedings of the International Workshop on Atmospheric Water Vapor held in Vail, Colorado, on September 11-13, 1979. The papers assess the state-of-the-art in measurement, modeling, and application of atmospheric water vapor properties and highlight important problems that require further effort in order to better understand the atmosphere itself as well as the electromagnetic propagation through the atmosphere. Comprised of 39 chapters, this book begins with a discussion on the optics and spectroscopy of water vapor. Some actual spectra showing the problems specific to the water molecule are described, along with the method used to calculate ...
This book gives an overview on the fundamentals and recent developments in the field of luminescent materials. Starting from the definitions and properties of phosphors, novel application areas as well as spectroscopic methods for characterization will be described. The reader will benefit from the vast knowledge of the authors with backgrounds in industry as well as academia.
Many satellites have recently been launched or are in preparation, which operate in the microwave to IR ranges, the main objective being to observe the earth's atmosphere or interstellar clouds. Analysis of the data they supply requires extensive laboratory work because we still only have sufficiently accurate data (line positions, intensities, and profiles) for only a few species. Furthermore, the observer community is making increasing calls for laboratory data, as new development open up new observational possibilities (such as submillimeter observation). Research on these subjects involves many different areas of specialisation in fields of research that generate a wealth of data. In Spectroscopy from Space the people responsible for field observations explain which results they are expecting from their measurements and how laboratory people can help them to analyse their satellite data. Laboratory spectroscopists explain why what they can do now, and what kinds of experiment and theoretical development that might undertake to meet the needs of the remote sensing community. The problems of distributing reliable laboratory data in a timely way are also addressed.
Updates the advancements made in the level of achievable integration of optical circuits and components in the last ten years--highlighting the commercial success of particular devices as well as introducing multiple facets of integrated optics.
Solid-state lasers which offer multiple desirable qualities, including enhanced reliability, robustness, efficiency and wavelength diversity, are absolutely indispensable for many applications. The Handbook of solid-state lasers reviews the key materials, processes and applications of solid-state lasers across a wide range of fields.Part one begins by reviewing solid-state laser materials. Fluoride laser crystals, oxide laser ceramics, crystals and fluoride laser ceramics doped by rare earth and transition metal ions are discussed alongside neodymium, erbium and ytterbium laser glasses, and nonlinear crystals for solid-state lasers. Part two then goes on to explore solid-state laser systems ...
None
Optical communications networks are becoming increasingly important as there is demand for high capacity links. Dense wavelength division multiplexing (DWDM) is widely deployed at the core networks to accommodate high capacity transport systems. Optical components such as optical amplifiers, tunable filters, transceivers, termination devices and add-drop multiplexers are becoming more reliable and affordable. Access and metropolitan area networks are increasingly built with optical technologies to overcome the electronic bottleneck at network edges. New components and subsystems for very high speed optical networks offer new design options.The proceedings of the First International Conference on Optical Communications and Networks present high quality recent research results in the areas of optical communications, network components, architectures, protocols, planning, design, management and operation.
Optical communications networks are becoming increasingly important as there is demand for high capacity links. Dense wavelength division multiplexing (DWDM) is widely deployed at the core networks to accommodate high capacity transport systems. Optical components such as optical amplifiers, tunable filters, transceivers, termination devices and add-drop multiplexers are becoming more reliable and affordable. Access and metropolitan area networks are increasingly built with optical technologies to overcome the electronic bottleneck at network edges. New components and subsystems for very high speed optical networks offer new design options.The proceedings of the First International Conference on Optical Communications and Networks present high quality recent research results in the areas of optical communications, network components, architectures, protocols, planning, design, management and operation.