You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The new edition of this book detailing the theory of linear-Hilbert space operators and their use in quantum physics contains two new chapters devoted to properties of quantum waveguides and quantum graphs. The bibliography contains 130 new items.
The ideas and principles of stochastic analysis have managed to penetrate into various fields of pure and applied mathematics in the last 15 years; it is particularly true for mathematical physics. This volume provides a wide range of applications of stochastic analysis in fields as varied as statistical mechanics, hydrodynamics, Yang-Mills theory and spin-glass theory.The proper concept of stochastic dynamics relevant to each type of application is described in detail here. Altogether, these approaches illustrate the reasons why their dissemination in other fields is likely to accelerate in the years to come./a
This unique volume presents reviews of research in several important areas of applications of mathematical concepts to science and technology, for example applications of inverse problems and wavelets to real world systems. The book provides a comprehensive overview of current research of several outstanding scholars engaged in diverse fields such as complexity theory, vertex coupling in quantum graphs, mixing of substances by turbulence, network dynamics and architecture, processes with rate — independent hysteresis, numerical analysis of Hamilton Jacobi — Bellman equations, simulations of complex stochastic differential equations, optimal flow control, shape optimal flow control, shape optimization and aircraft designing, mathematics of brain, nanotechnology and DNA structure and mathematical models of environmental problems. The volume also contains contributory talks based on current researches of comparatively young researchers participating in the conference.
This monograph explains the theory of quantum waveguides, that is, dynamics of quantum particles confined to regions in the form of tubes, layers, networks, etc. The focus is on relations between the confinement geometry on the one hand and the spectral and scattering properties of the corresponding quantum Hamiltonians on the other. Perturbations of such operators, in particular, by external fields are also considered. The volume provides a unique summary of twenty-five years of research activity in this area and indicates ways in which the theory can develop further. The book is fairly self-contained. While it requires some broader mathematical physics background, all the basic concepts are properly explained and proofs of most theorems are given in detail, so there is no need for additional sources. Without a parallel in the literature, the monograph by Exner and Kovarik guides the reader through this new and exciting field.
Traditional quantum theory has a very rigid structure, making it difficult to accommodate new properties emerging from novel systems. This book presents a flexible and unified theory for physical systems, from micro and macro quantum to classical. This is achieved by incorporating superselection rules and maximal symmetric operators into the theory. The resulting theory is applicable to classical, microscopic quantum and non-orthodox mixed quantum systems of which macroscopic quantum systems are examples. A unified formalism also greatly facilitates the discussion of interactions between these systems. A scheme of quantization by parts is introduced, based on the mathematics of selfadjoint a...
This volume contains twenty contributions in the area of mathematical physics where Fritz Gesztesy made profound contributions. There are three survey papers in spectral theory, differential equations, and mathematical physics, which highlight, in particu
This volume contains papers which were presented at a series of short meetings collectively entitled “Stochastics and Quantum Mechanics” held in Swansea over the summer of 1990. Also included are some papers not presented at the meetings, but in the same subject area, authored by attendees or their co-workers. The topics covered include diffusion processes, stochastic mechanics, statistical mechanics, large deviations and Wiener-Hopf theory.The papers are in the main immediately accessible to workers in the field and provide a reasonable coverage of current areas of interest centering around uses of probabilistic methods in mathematical physics.
Leading scientists discuss the most recent physical and experimental results in the physics of Bose-Einstein condensate theory, the theory of nonlinear lattices (including quantum and nonlinear lattices), and nonlinear optics and photonics. Classical and quantum aspects of the dynamics of nonlinear waves are considered. The contributions focus on the Gross-Pitaevskii equation and on the quantum nonlinear Schrödinger equation. Recent experimental results on atomic condensates and hydrogen bonded systems are reviewed. Particular attention is given to nonlinear matter waves in periodic potential.
When Napoleons Grand Armee went to war against the might of the Habsburg empire in 1809, its forces included more than 100,000 allied German troops. From his earliest imperial campaigns, these troops provided played a key role as Napoleon swept from victory to victory and in 1809 their fighting abilities were crucial to the campaign. With Napoleons French troops depleted and debilitated after the long struggle in the Spanish War, the German troops for the first time played a major combat role in the centre of the battle line. Aiming at a union of German states under French protection to replace the decrepit Holy Roman Empire, Napoleon sought to expand French influence in central Germany ...
This volume consists of refereed research articles written by some of the speakers at this international conference in honor of the sixty-fifth birthday of Jean-Michel Combes. The topics span modern mathematical physics with contributions on state-of-the-art results in the theory of random operators, including localization for random Schrodinger operators with general probability measures, random magnetic Schrodinger operators, and interacting multiparticle operators with random potentials; transport properties of Schrodinger operators and classical Hamiltonian systems; equilibrium and nonequilibrium properties of open quantum systems; semiclassical methods for multiparticle systems and long-time evolution of wave packets; modeling of nanostructures; properties of eigenfunctions for first-order systems and solutions to the Ginzburg-Landau system; effective Hamiltonians for quantum resonances; quantum graphs, including scattering theory and trace formulas; random matrix theory; and quantum information theory. Graduate students and researchers will benefit from the accessibility of these articles and their current bibliographies.