You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Offers information on the fundamental principles, processes, methods and procedures related to fibre-reinforced composites. The book presents a comparative view, and provides design properties of polymeric, metal, ceramic and cement matrix composites. It also gives current test methods, joining techniques and design methodologies.
This third edition of a bestseller offers a current perspective on the mechanics, characteristics, test methods, applications, manufacturing processes, and design aspects of composites. Highlighting materials such as nanocomposites and smart materials, the book contains new information on material substitution, cost analysis, nano- and natural fibers, fiber architecture, carbon-carbon composites, thermoplastics matrix composites, resin transfer molding, and test methods such as fiber bundle tests and interlaminar fracture measurements. It presents a new chapter on polymer-based nanocomposites. New examples and additional problems emphasize problem-solving skills used in real-world applications.
Polymer matrix composites are finding increasing number of applications due to their high weight-saving potential as well as unique characteristics, such as high strength-to-density ratio, fatigue resistance, high damping factor, and freedom from corrosion. While many textbooks are available on the mechanics of polymer matrix composites, few cover their processing. Processing of Polymer Matrix Composites fills this gap. The book focuses on the major manufacturing processes used for polymer matrix composites and describes process details, process parameters and their effects on properties and process-induced defects, and analytical and experimental methods used for understanding process conditions. The book describes fibers, thermosetting and thermoplastic polymers, and interface characteristics that are important from the standpoint of both design and processing. It also emphasizes the applications of process fundamentals for both continuous fiber and short fiber polymer matrix composites. In addition the book considers quality inspection methods, tooling, and manufacturing costs and environmental and safety issues.
This book provides the reader with an introduction to the world of educational research, helping the reader understand the terminology and issues and providing guidance on initiating and implementing research studies.
This timely book on structural adhesives joints showcases all the pertinent topics and will be of immense value to scientists and engineers in many industries. Most structures are comprised of a number of individual parts or components which have to be connected to form a system with integral load transmission path. The structural adhesive bonding represents one of the most enabling technologies to fabricate most complex structural configurations involving advanced materials (e.g. composites) for load-bearing applications. Quite recently there has been a lot of activity in harnessing nanotechnology (use of nanomaterials) in ameliorating the existing or devising better performing structural adhesives. The 10 chapters by subject matter experts look at the following issues: Surface preparation for structural adhesive joints (SAJ) Use of nanoparticles in enhancing performance of SAJ Optimization of SAJ Durability aspects of SAJ Debonding of SAJ Fracture mechanics of SAJ Failure analysis of SAJ Damage behavior in functionally graded SAJ Impact, shock and vibration characteristics of composites for SAJ Delamination arrest methods in SAJ
The automotive industry is under constant pressure to design vehicles capable of meeting increasingly demanding challenges such as improved fuel economy, enhanced safety and effective emission control. Drawing on the knowledge of leading experts, Advanced materials in automotive engineering explores the development, potential and impact of using such materials.Beginning with a comprehensive introduction to advanced materials for vehicle lightweighting and automotive applications, Advanced materials in automotive engineering goes on to consider nanostructured steel for automotive body structures, aluminium sheet and high pressure die-cast aluminium alloys for automotive applications, magnesiu...
This book presents selected, high-quality research papers from the International Conference on Electronic Systems and Intelligent Computing (ESIC 2020), held at NIT Yupia, Arunachal Pradesh, India, on 2 – 4 March 2020. Discussing the latest challenges and solutions in the field of smart computing, cyber-physical systems and intelligent technologies, it includes papers based on original theoretical, practical and experimental simulations, developments, applications, measurements, and testing. The applications and solutions featured provide valuable reference material for future product development.
This volume describes how to conceptualize, perform, and critique traditional generalized linear models (GLMs) from a Bayesian perspective and how to use modern computational methods to summarize inferences using simulation. Introducing dynamic modeling for GLMs and containing over 1000 references and equations, Generalized Linear Models considers parametric and semiparametric approaches to overdispersed GLMs, presents methods of analyzing correlated binary data using latent variables. It also proposes a semiparametric method to model link functions for binary response data, and identifies areas of important future research and new applications of GLMs.