You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book has been produced to give a total overview of the Activated Sludge Model (ASM) family at the start of 2000 and to give the reader easy access to the different models in their original versions. It thus presents ASM1, ASM2, ASM2d and ASM3 together for the first time. Modelling of activated sludge processes has become a common part of the design and operation of wastewater treatment plants. Today models are being used in design, control, teaching and research. Contents ASM3: Introduction, Comparison of ASM1 and ASM3, ASM3: Definition of compounds in the model, ASM3: Definition of processes in the Model, ASM3: Stoichiometry, ASM3: Kinetics, Limitations of ASM3, Aspects of application ...
Following in the footsteps of previous highly successful and useful editions, Biological Wastewater Treatment, Third Edition presents the theoretical principles and design procedures for biochemical operations used in wastewater treatment processes. It reflects important changes and advancements in the field, such as a revised treatment of the micr
Mathematical Modelling and Computer Simulation of Activated Sludge Systems – Second Edition provides, from the process engineering perspective, a comprehensive and up-to-date overview regarding various aspects of the mechanistic (“white box”) modelling and simulation of advanced activated sludge systems performing biological nutrient removal. In the new edition of the book, a special focus is given to nitrogen removal and the latest developments in modelling the innovative nitrogen removal processes. Furthermore, a new section on micropollutant removal has been added. The focus of modelling has been shifting in the last years to models that can describe the performance of a whole plant...
Mathematical modeling is a useful tool for the design, analysis and control of wastewater treatment systems. The activated sludge process is one of the most common processes used in wastewater treatment, and therefore is a particularly important candidate for the application of mathematical models. In the 1980s, a task group organized by the International Association on Water Quality (IAWQ) developed a conceptual model of the activated sludge process, which has become an industry-wide standard for the development of computer-based activated sludge models. A recent version of the IAWQ model incorporates 19 components, 17 processes, and numerous rate and stoichiometric coefficients. It is difficult and costly to quantify all of the necessary coefficients for any given application of the model; consequently, it is important to identify the most critical wastewater and biomass components and the relevant coefficients to be quantified for the most common uses of the model. It is also important to provide guidance to potential model users on the use of default and/or estimated values for the remaining parameters.
Activated sludge is the most vital wastewater process today. Now, this recent book provides a comprehensive guide to the modelling and design of activated sludge systems. Written by two leaders in the wastewater field, the book presents extensive and up-to-date coverage of all areas in the activated sludge process microbiological basis, reactor kinetics, and design methodologies. The book is organized for easy reference and is ideal as a text or desktop guide.
Written by noted experts in the field sharing extensive academic and industrial experience, this thoroughly updated Second Edition covers commonly used and new suspended and attached growth reactors. The authors discuss combined carbon and ammonia oxidation, activated sludge, biological nutrient removal, aerobic digestion, anaerobic processes, lagoons, trickling filters, rotating biological contactors, fluidized beds, and biologically aerated filters. They integrate the principles of biochemical processes with applications in the real world-communicating approaches to the conception, design, operation, and optimization of biochemical unit operations in a comprehensive yet lucid manner.
This Report presents information on the current state of knowledge of the origins, occurrence, nature and effects of sewer solids for use by engineers, scientists, administrators and water quality planners for the planning, design and operation of sewerage systems. The report addresses both sewer maintenance requirements and environmental protection issues. Increasing environmental standards, coupled with public expectations, have led to stringent water quality standards. In response to this, it has been necessary to develop new methodologies and computer based analytical techniques to model and understand the performance of all aspects of waste water systems. Fundamental to these techniques is the understanding of the way in which sewer solids contribute to the poor performance of wastewater systems and consequential environmental damage. The information presented in this Report about the origins, nature, movement, hydraulic and polluting effects of solids in sewers has enabled strategies and rules to be developed for the management of sewerage systems to minimise the deleterious effects of these solids and associated pollutants. Scientific & Technical Report No. 14
Known and used throughout the world, the Purdue Industrial Waste Conference Proceedings books are the most highly regarded in the waste treatment field. New research, case histories, and operating data cover every conceivable facet of today's big problems in environmental control, treatment, regulation, and compliance. This volume representing the proceedings from the 49th conference provides unparalled information and data for your current waste problems.