You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This 1987 book examines the approximation of real functions by real rational functions. These are a more convenient tool than polynomials, and interest in them was growing, especially after D. Newman's work in the mid-sixties. The authors present the basic achievements of the subject and also discuss some topics from complex rational approximation.
The subject of multivariate splines has become a rapidly growing field of mathematical research. The author presents the subject from an elementary point of view that parallels the theory and development of univariate spline analysis. To compensate for the missing proofs and details, an extensive bibliography has been included. There is a presentation of open problems with an emphasis on the theory and applications to computer-aided design, data analysis, and surface fitting. Applied mathematicians and engineers working in the areas of curve fitting, finite element methods, computer-aided geometric design, signal processing, mathematical modelling, computer-aided design, computer-aided manufacturing, and circuits and systems will find this monograph essential to their research.
Multigrid methods are among the most efficient iterative methods for the solution of linear systems which arise in many large scale scientific calculations. Every researcher working with the numerical solution of partial differential equations should at least be familiar with this powerful technique. This invaluable book presents results concerning the rates of convergence of multigrid iterations.
Steven Finch provides 136 essays, each devoted to a mathematical constant or a class of constants, from the well known to the highly exotic. This book is helpful both to readers seeking information about a specific constant, and to readers who desire a panoramic view of all constants coming from a particular field, for example, combinatorial enumeration or geometric optimization. Unsolved problems appear virtually everywhere as well. This work represents an outstanding scholarly attempt to bring together all significant mathematical constants in one place.
The principles of signal processing are using widely in telecommunications, control systems, sensors, smartphones, tablets, TV, video- and photo-cameras, computers, audio systems, etc. Written by 43 experienced and well-respected experts from universities, research centres and industry from 14 countries: Argentina, Australia, Brazil, China, Ecuador, France, Japan, Poland, Portugal, Spain, Switzerland, UK, Ukraine and USA the 'Advances is Signal Processing: Reviews', Vol. 1, Book Series, contains 13 chapters from the signals and systems theory to real-world applications. The authors discuss existing issues and ways to overcome these problems as well as the new challenges arising in the field. The book concludes with methods for the efficient implementation of algorithms in hardware and software. The advantages and disadvantages of different approaches are presented in the context of practical examples.
Our understanding of nature is often through nonuniform observations in space or time. In space, one normally observes the important features of an object, such as edges. The less important features are interpolated. History is a collection of important events that are nonuniformly spaced in time. Historians infer between events (interpolation) and politicians and stock market analysts forecast the future from past and present events (extrapolation). The 20 chapters of Nonuniform Sampling: Theory and Practice contain contributions by leading researchers in nonuniform and Shannon sampling, zero crossing, and interpolation theory. Its practical applications include NMR, seismology, speech and image coding, modulation and coding, optimal content, array processing, and digital filter design. It has a tutorial outlook for practising engineers and advanced students in science, engineering, and mathematics. It is also a useful reference for scientists and engineers working in the areas of medical imaging, geophysics, astronomy, biomedical engineering, computer graphics, digital filter design, speech and video processing, and phased array radar.
The book of invited articles offers a collection of high-quality papers in selected and highly topical areas of Applied and Numerical Mathematics and Approximation Theory which have some connection to Wolfgang Dahmen's scientific work. On the occasion of his 60th birthday, leading experts have contributed survey and research papers in the areas of Nonlinear Approximation Theory, Numerical Analysis of Partial Differential and Integral Equations, Computer-Aided Geometric Design, and Learning Theory. The main focus and common theme of all the articles in this volume is the mathematics building the foundation for most efficient numerical algorithms for simulating complex phenomena.
Constantin presents the Euler equations of ideal incompressible fluids and the blow-up problem for the Navier-Stokes equations of viscous fluids, describing major mathematical questions of turbulence theory. These are connected to the Caffarelli-Kohn-Nirenberg theory of singularities for the incompressible Navier-Stokes equations, explained in Gallavotti's lectures. Kazhikhov introduces the theory of strong approximation of weak limits via the method of averaging, applied to Navier-Stokes equations. Y. Meyer focuses on nonlinear evolution equations and related unexpected cancellation properties, either imposed on the initial condition, or satisfied by the solution itself, localized in space or in time variable. Ukai discusses the asymptotic analysis theory of fluid equations, the Cauchy-Kovalevskaya technique for the Boltzmann-Grad limit of the Newtonian equation, the multi-scale analysis, giving compressible and incompressible limits of the Boltzmann equation, and the analysis of their initial layers.
From Design Methods and Generation Schemes to State-of-the-Art Applications Wavelets are powerful tools for functional analysis and geometry processing, enabling researchers to determine the structure of data and analyze 3D shapes. Suitable for researchers in computer graphics, computer vision, visualization, medical imaging, and geometric modeling as well as graduate and senior undergraduate students in computer science, Diffusion-Driven Wavelet Design for Shape Analysis presents recent research results in wavelet designs on 3D shapes and their applications in shape analysis. It explains how to apply the design methods to various types of 3D data, such as polygonal meshes, point clouds, man...
This reference book provides the main definitions, theorems and techniques in the theory of Birkhoff interpolation by polynomials. The book begins with an article by G. G. Lorentz that discusses some of the important developments in approximation and interpolation in the last twenty years. It presents all the basic material known at the present time in a unified manner. Topics discussed include; applications of Birkhoff interpolation to approximation theory, quadrature formulas and Chebyshev systems; lacunary interpolation at special knots and an introduction to the theory of Birkhoff interpolation by splines.