You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Extending the well-known connection between classical linear potential theory and probability theory (through the interplay between harmonic functions and martingales) to the nonlinear case of tug-of-war games and their related partial differential equations, this unique book collects several results in this direction and puts them in an elementary perspective in a lucid and self-contained fashion.
Extending the well-known connection between classical linear potential theory and probability theory (through the interplay between harmonic functions and martingales) to the nonlinear case of tug-of-war games and their related partial differential equations, this unique book collects several results in this direction and puts them in an elementary perspective in a lucid and self-contained fashion.
This is a clear, rigorous and self-contained introduction to PDEs for a semester-based course on the topic. For the sake of smooth exposition, the book keeps the amount of applications to a minimum, focusing instead on the theoretical essentials and problem solving. The result is an agile compendium of theorems and methods - the ideal companion for any student tackling PDEs for the first time. Vladimir Tolstykh is a professor of mathematics at Istanbul Arel University. He works in group theory and model-theoretic algebra. Dr. Tolstykh received his Ph.D. in Mathematics from the Ural Institute of Mathematics and Mechanics (Ekaterinburg (Russia) in 1992 and his Doctor of Science degree in Mathematics from the Sobolev Institute of Mathematics (Novosibirsk, Russia) in 2007.
Concentration compactness methods are applied to PDE's that lack compactness properties, typically due to the scaling invariance of the underlying problem. This monograph presents a systematic functional-analytic presentation of concentration mechanisms and is by far the most extensive and systematic collection of mathematical tools for analyzing the convergence of functional sequences via the mechanism of concentration.
This book focuses on problems at the interplay between the theory of partitions and optimal transport with a view toward applications. Topics covered include problems related to stable marriages and stable partitions, multipartitions, optimal transport for measures and optimal partitions, and finally cooperative and noncooperative partitions. All concepts presented are illustrated by examples from game theory, economics, and learning.
This self-contained book covers the theory of semilinear equations with sectorial operator going back to the studies of Yosida, Henry, and Pazy, which are deeply extended nowadays. The treatment emphasizes existence-uniqueness theory as a topic of functional analysis and examines abstract evolutionary equations, with applications to the Navier-Stokes system, the quasi-geostrophic equation, and fractional reaction-diffusion equations.
None