You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Discover the concepts of deep learning used for natural language processing (NLP), with full-fledged examples of neural network models such as recurrent neural networks, long short-term memory networks, and sequence-2-sequence models. You’ll start by covering the mathematical prerequisites and the fundamentals of deep learning and NLP with practical examples. The first three chapters of the book cover the basics of NLP, starting with word-vector representation before moving onto advanced algorithms. The final chapters focus entirely on implementation, and deal with sophisticated architectures such as RNN, LSTM, and Seq2seq, using Python tools: TensorFlow, and Keras. Deep Learning for Natur...
Knowledge-based systems, fully integrated with software, have become essential enablers for both science and commerce. But current software methodologies, tools and techniques are not robust or reliable enough for the demands of a constantly changing and evolving market, and many promising approaches have proved to be no more than case-oriented methods that are not fully automated. This book presents the proceedings of the 17th international conference on New Trends in Intelligent Software Methodology, Tools and Techniques (SoMeT18) held in Granada, Spain, 26-28 September 2018. The SoMeT conferences provide a forum for the exchange of ideas and experience, foster new directions in software d...
If you want to learn network analysis and visualization along with graph concepts from scratch, then this book is for you. This is ideal for those of you with little or no understanding of Gephi and this domain, but will also be beneficial for those interested in expanding their knowledge and experience.
This book gathers selected papers presented at 3rd International Conference on Communication and Computational Technologies (ICCCT 2021), jointly organized in virtual format by Rajasthan Institute of Engineering and Technology, Jaipur and Rajasthan Technical University Kota in association with Soft Computing Research Society, during 27–28 February 2021. The volume is a collection of state-of-the-art research work in the cutting-edge technologies related to communication and intelligent systems. The topics covered are algorithms and applications of intelligent systems, informatics and applications, and communication and control systems.
This volume gathers together selected, peer-reviewed papers presented at the BIOMAT 2020 International Symposium, which was virtually held on November 1-6, 2020, with an organization staff based in Rio de Janeiro, Brazil. Topics covered in this volume include infection modeling, with an emphasis on different aspects of the COVID-19 and novel Coronavirus spread; a description of the effectiveness of quarantine measures via dynamic analysis of SLIR model; hemodynamic simulations in time-dependent domains; an optimal control model for the Ebola disease; and the co-existence of chaos and control in the context of biological models. Texts in agroforestry, economic development, and wastewater trea...
AI-Powered Productivity is a guide to understanding and using AI and generative tools in professional settings. Chapter 1 introduces AI basics, its impact on various sectors, and an overview of generative AI tools. Chapter 2 delves into large language models exploring their integration with multimodal technologies and effects on productivity. Chapter 3 offers a practical guide to mastering LLM prompting and customization, with tutorials on crafting effective prompts and advanced techniques, including real-world examples of AI applications. Chapter 4 examines how AI can enhance individual productivity, focusing on professional and personal benefits, ethical use, and future trends. Chapter 5 a...
This book features original papers from the 3rd International Conference on Smart IoT Systems: Innovations and Computing (SSIC 2021), organized by Manipal University, Jaipur, India, during January 22–23, 2021. It discusses scientific works related to data engineering in the context of computational collective intelligence consisted of interaction between smart devices for smart environments and interactions. Thanks to the high-quality content and the broad range of topics covered, the book appeals to researchers pursuing advanced studies.
This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.
Dimensionality reduction, also known as manifold learning, is an area of machine learning used for extracting informative features from data for better representation of data or separation between classes. This book presents a cohesive review of linear and nonlinear dimensionality reduction and manifold learning. Three main aspects of dimensionality reduction are covered: spectral dimensionality reduction, probabilistic dimensionality reduction, and neural network-based dimensionality reduction, which have geometric, probabilistic, and information-theoretic points of view to dimensionality reduction, respectively. The necessary background and preliminaries on linear algebra, optimization, an...
Networks naturally appear in many high-impact domains, ranging from social network analysis to disease dissemination studies to infrastructure system design. Within network studies, network connectivity plays an important role in a myriad of applications. The diversity of application areas has spurred numerous connectivity measures, each designed for some specific tasks. Depending on the complexity of connectivity measures, the computational cost of calculating the connectivity score can vary significantly. Moreover, the complexity of the connectivity would predominantly affect the hardness of connectivity optimization, which is a fundamental problem for network connectivity studies. This bo...