You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book deals with the latest achievements in the field of ferroelectric domain engineering and characterization at micron- and nano-scale dimensions and periods. The book collects the results obtained in recent years by world renowned scientific leaders in the field, thus providing a valid and unique overview of the state-of-the-art. At the same time the book provides a view to future applications of those engineered materials in the field of photonics.
Published on the occasion of Theodor Hänsch's 60th Birthday emphasis is placed on precision related to results in a variety of fields, such as atomic clocks, frequency standards, and the measurement of physical constants in atomic physics. Furthermore, illustrations and engineering applications of the fundamentals of quantum mechanics are widely covered. It has contributions by Nobel prize winners Norman F. Ramsey, Steven Chu, and Carl E. Wieman.
Despite a number of books on biophotonics imaging for medical diagnostics and therapy, the field still lacks a comprehensive imaging book that describes state-of-the-art biophotonics imaging approaches intensively developed in recent years. Addressing this shortfall, Advanced Biophotonics: Tissue Optical Sectioning presents contemporary methods and
For more than a century, studies of atomic hydrogen have been a rich source of scientific discoveries. These began with the Balmer series in 1885 and the early quantum theories of the atom, and later included the development of QED and the first successful gauge field theory. Today, hydrogen and its relatives continue to provide new fundamental information, as witnessed by the contributions to this book. The printed volume contains invited reviews on the spectroscopy of hydrogen, muonium, positronium, few-electron ions and exotic atoms, together with related topics such as frequency metrology and the determination of fundamental constants. The accompanying CD contains, in addition to these reviews, a further 40 contributed papers also presented at the conference "Hydrogen Atom 2" held in summer 2000. Finally, to facilitate a historical comparison, the CD also contains the proceedings of the first "Hydrogen Atom" conference of 1988. The book includes a foreword by Norman F. Ramsey.
Due to the development of microscale fabrication methods, microlenses are being used more and more in many unique applications, such as artificial implementations of compound eyes, optical communications, and labs-on-chips. Liquid microlenses, in particular, represent an important and growing research area yet there are no books devoted to this top
"Preface -- Part I: Optoelectronic Sensors Technologies -- 1. Fiber and Integrated Optics Sensors: Fundamentals and Applications G. C. Righini, A. G. Mignani, I. Cacciari and M. Brenci -- 1. Introduction -- 2. Fiber and Integrated Optics: Fundamentals of Waveguiding -- 3. Waveguide Sensors: Basic Working Principle -- 4. Fiber Optic Sensors -- 5. Long-Period Optical Fiber Grating Sensors -- 6. Micro-structured Fiber Sensors -- 7. Integrated Optic Sensors -- 8. Conclusions -- References -- 2. Fiber Bragg Grating Sensors: Industrial Applications C. Ambrosino, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano and A. Cusano -- 1. Introduction -- 2. Fiber Bragg Gratings History -- 3. Fiber Bragg...
The book reviews the dramatic recent advances in the use of optical resonators for high sensitivity and high resolution molecular spectroscopy as well as for chemical, mechanical and physical sensing. It encompasses a variety of cavities including those made of two or more mirrors, optical fiber loops, fiber gratings and spherical cavities. The book focuses on novel techniques and their applications. Each chapter is written by an expert and/or pioneer in the field. These experts also provide the theoretical background in optics and molecular physics where needed. Examples of recent breakthroughs include the use of frequency combs (Nobel prize 2005) for cavity enhanced sensing and spectroscopy, the use of novel cavity materials and geometries, the development of optical heterodyne detection techniques combined to active frequency-locking schemes. These methods allow the use and interrogation of optical resonators with a variety of coherent light sources for trace gas detection and sensing of strain, temperature and pressure.
The reliability and accuracy of systems of measurement continue to advance. We are about to enter a period of the most stable measurement system we can imagine with the anticipated new definitions of the SI units of measurement; a direct link between fundamental physics and metrology which will eliminate the current definition of the kilogram, until now based upon an artifact. This book presents selected papers from Course 185 of the Enrico Fermi International School of Physics, held in Varenna, Italy, in July 2012 and jointly organized with the Bureau International des Poids et Mesures (BIPM). The papers delivered at the school covered some of the most advanced topics in the discipline of m...
Due to their speed, data density, and versatility, optical metrology tools play important roles in today's high-speed industrial manufacturing applications. Handbook of Optical Dimensional Metrology provides useful background information and practical examples to help readers understand and effectively use state-of-the-art optical metrology methods
The first nonlinear optical effect was observed in the 19th century by John Kerr. Nonlinear optics, however, started to grow up only after the invention of the laser, when intense light sources became easily available. The seminal studies by Peter Franken and Nicolaas Bloembergen, in the 1960s, paved the way for the development of today’s nonlinear photonics, the field of research that encompasses all the studies, designs, and implementations of nonlinear optical devices that can be used for the generation, communication, and processing of information. This field has attracted significant attention, partly due to the great potential of exploiting the optical nonlinearities of new or advanc...