You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
For the past several decades, the study of free boundary problems has been a very active subject of research occurring in a variety of applied sciences. What these problems have in common is their formulation in terms of suitably posed initial and boundary value problems for nonlinear partial differential equations. Such problems arise, for example, in the mathematical treatment of the processes of heat conduction, filtration through porous media, flows of non-Newtonian fluids, boundary layers, chemical reactions, semiconductors, and so on. The growing interest in these problems is reflected by the series of meetings held under the title "Free Boundary Problems: Theory and Applications" (Ox ...
The problems considered range from basic theoretical issues in the calculus of variations - such as infinite dimensional Hamilton Jacobi equations, saddle point principles, and issues of unique continuation - to ones focusing on application and computation, where theoretical tools are tuned to more specifically defined problems.
This volume is an outcome of the workshop "Moduli of K-stable Varieties", which was held in Rome, Italy in 2017. The content focuses on the existence problem for canonical Kähler metrics and links to the algebro-geometric notion of K-stability. The book includes both surveys on this problem, notably in the case of Fano varieties, and original contributions addressing this and related problems. The papers in the latter group develop the theory of K-stability; explore canonical metrics in the Kähler and almost-Kähler settings; offer new insights into the geometric significance of K-stability; and develop tropical aspects of the moduli space of curves, the singularity theory necessary for higher dimensional moduli theory, and the existence of minimal models. Reflecting the advances made in the area in recent years, the survey articles provide an essential overview of many of the most important findings. The book is intended for all advanced graduate students and researchers who want to learn about recent developments in the theory of moduli space, K-stability and Kähler-Einstein metrics.
Many partial differential equations (PDEs) that arise in physics can be viewed as infinite-dimensional Hamiltonian systems. This monograph presents recent existence results of nonlinear oscillations of Hamiltonian PDEs, particularly of periodic solutions for completely resonant nonlinear wave equations. The text serves as an introduction to research in this fascinating and rapidly growing field. Graduate students and researchers interested in variational techniques and nonlinear analysis applied to Hamiltonian PDEs will find inspiration in the book.
The articles in this volume reflect a subsequent development after a scientific meeting entitled Carleman Estimates and Control Theory, held in Cartona in September 1999. The 14 research-level articles, written by experts, focus on new results on Carleman estimates and their applications to uniqueness and controlla bility of partial differential equations and systems. The main topics are unique continuation for elliptic PDEs and systems, con trol theory and inverse problems. New results on strong uniqueness for second or higher order operators are explored in detail in several papers. In the area of control theory. the reader will find applications of Carleman estimates to stabiliza tion, ob...
This book discusses the design of new space missions and their use for a better understanding of the dynamical behaviour of solar system bodies, which is an active field of astrodynamics. Space missions gather data and observations that enable new breakthroughs in our understanding of the origin, evolution and future of our solar system and Earth’s place within it. Covering topics such as satellite and space mission dynamics, celestial mechanics, spacecraft navigation, space exploration applications, artificial satellites, space debris, minor bodies, and tidal evolution, the book presents a collection of contributions given by internationally respected scientists at the summer school “Satellite Dynamics and Space Missions: Theory and Applications of Celestial Mechanics”, held in 2017 at San Martino al Cimino, Viterbo (Italy). This school aimed to teach the latest theories, tools and methods developed for satellite dynamics and space, and as such the book is a valuable resource for graduate students and researchers in the field of celestial mechanics and aerospace engineering.
In recent years many researchers in material science have focused their attention on the study of composite materials, equilibrium of crystals and crack distribution in continua subject to loads. At the same time several new issues in computer vision and image processing have been studied in depth. The understanding of many of these problems has made significant progress thanks to new methods developed in calculus of variations, geometric measure theory and partial differential equations. In particular, new technical tools have been introduced and successfully applied. For example, in order to describe the geometrical complexity of unknown patterns, a new class of problems in calculus of variations has been introduced together with a suitable functional setting: the free-discontinuity problems and the special BV and BH functions. The conference held at Villa Olmo on Lake Como in September 1994 spawned successful discussion of these topics among mathematicians, experts in computer science and material scientists.
This book is the second of two volumes which contain the proceedings of the Workshop on Nonlinear Partial Differential Equations, held from May 28-June 1, 2012, at the University of Perugia in honour of Patrizia Pucci's 60th birthday. The workshop brought together leading experts and researchers in nonlinear partial differential equations to promote research and to stimulate interactions among the participants.
This volume is a collection of original research papers and expository articles stemming from the scientific program of the Nonlinear PDE Emphasis Year held at Northwestern University (Evanston, IL) in March 1998. The book offers a cross-section of the most significant recent advances and current trends and directions in nonlinear partial differential equations and related topics. The book's contributions offer two perspectives. There are papers on general analytical treatment of the theory and papers on computational methods and applications originating from significant realistic mathematical models of natural phenomena. Also included are articles that bridge the gap between these two perspectives, seeking synergistic links between theory and modeling and computation. The volume offers direct insight into recent trends in PDEs. This volume is also available on the Web. Those who purchase the print edition can gain free access by going to www.ams.org/conm/.