You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Photonic MEMS devices represent the next major breakthrough in the silicon revolution. While many quality resources exist on the optic and photonic aspect of device physics, today’s researchers are in need of a reference that goes beyond to include all aspects of engineering innovation. An extension on traditional design and analysis, Photonic MEMS Devices: Design, Fabrication, and Control describes a broad range of optical and photonic devices, from MEMS optical switches and bandgap crystal switches to optical variable attenuators (VOA) and injection locked tunable lasers. It deals rigorously with all these technologies at a fundamental level, systematically introducing critical nomenclature. Each chapter also provides analysis techniques, equations, and experimental results. The book focuses not only on traditional design analysis, but also provides extensive background on realistic simulation and fabrication processes. With a clear attention to experimental relevance, this book provides the fundamental knowledge needed to take the next-step in integrating photonic MEMS devices into commercial products and technology.
This new edition of the bestselling Microlithography: Science and Technology provides a balanced treatment of theoretical and operational considerations, from elementary concepts to advanced aspects of modern submicron microlithography. Each chapter reflects the current research and practices from the world's leading academic and industrial laboratories detailed by a stellar panel of international experts. New in the Second Edition In addition to updated information on existing material, this new edition features coverage of technologies developed over the last decade since the first edition appeared, including: Immersion Lithography 157nm Lithography Electron Projection Lithography (EPL) Ex...
This book provides comprehensive, state-of-the art coverage of photorefractive organic compounds, a class of material with the ability to change their index of refraction upon illumination. The change is both dynamic and reversible. Dynamic because no external processing is required for the index modulation to be revealed, and reversible because the index change can be modified or suppressed by altering the illumination pattern. These properties make photorefractive materials very attractive candidates for many applications such as image restoration, correlation, beam conjugation, non-destructive testing, data storage, imaging through scattering media, holographic imaging and display. The field of photorefractive organic material is also closely related to organic photovoltaic and light emitting diode (OLED), which makes new discoveries in one field applicable to others.
Since the invention of the laser, our fascination with the photon has led to one of the most dynamic and rapidly growing fields of technology. An explosion of new materials, devices, and applications makes it more important than ever to stay current with the latest advances. Surveying the field from fundamental concepts to state-of-the-art developments, Photonics: Principles and Practices builds a comprehensive understanding of the theoretical and practical aspects of photonics from the basics of light waves to fiber optics and lasers. Providing self-contained coverage and using a consistent approach, the author leads you step-by-step through each topic. Each skillfully crafted chapter first...
Reflecting rapid growth in research and development on organic/polymeric electronic and photonic materials and devices, Introduction to Organic Electronic and Optoelectronic Materials and Devices provides comprehensive coverage of the state-of-the-art in an accessible format. The book presents fundamentals, principles, and mechanisms complem
Complex-mediums electromagnetics (CME) describes the study of electromagnetic fields in materials with complicated response properties. This truly multidisciplinary field commands the attentions of scientists from physics and optics to electrical and electronic engineering, from chemistry to materials science, to applied mathematics, biophysics, and nanotechnology. This book is a collection of essays to explain complex mediums for optical and electromagnetic applications. All contributors were requested to write with two aims: first, to educate; second, to provide a state-of-the-art review of a particular subtopic. The vast scope of CME exemplified by the actual materials covered in the essays should provide a plethora of opportunities to the novice and the initiated alike.
Compiling the most influential papers from the IEICE Transactions in Communications, High-Performance Backbone Network Technology examines critical breakthroughs in the design and provision of effective public service networks in areas including traffic control, telephone service, real-time video transfer, voice and image transmission for a content delivery network (CDN), and Internet access. The contributors explore system structures, experimental prototypes, and field trials that herald the development of new IP networks that offer quality-of-service (QoS), as well as enhanced security, reliability, and function. Offers many hints and guidelines for future research in IP and photonic backbone network technologies
From its initial publication titled Laser Beam Scanning in 1985 to Handbook of Optical and Laser Scanning, now in its second edition, this reference has kept professionals and students at the forefront of optical scanning technology. Carefully and meticulously updated in each iteration, the book continues to be the most comprehensive scanning resource on the market. It examines the breadth and depth of subtopics in the field from a variety of perspectives. The Second Edition covers: Technologies such as piezoelectric devices Applications of laser scanning such as Ladar (laser radar) Underwater scanning and laser scanning in CTP As laser costs come down, and power and availability increase, t...
While ion-beam techniques have been used to create thin films in the semiconductor industry for several decades, these methods have been too costly for other surface treatment applications. However, as manufacturing devices become increasingly smaller, the use of a directed-energy ion beam is finding novel industrial applications that require the custom tailoring of new materials and devices, including magnetic storage devices, photonics, opto-electronics, and molecular transport. Engineering Thin Films and Nanostructures with Ion Beams offers a thorough narrative of the recent advances that make this technology relevant to current and future applications. Featuring internationally recognize...
As we reach the data transmission limits of copper wire and communications experts seek to bring the speed of long-haul fiber optics networks closer to access points, optical interconnects promise to provide efficient, high-speed data transmission for the next generation of networks and systems. They offer higher bit-rates, virtually no crosstalk, lower demands on power requirements and thermal management, and the possibility of two-dimensional channel arrays for chip-to-chip communication. The Handbook of Optical Interconnects introduces the systems and devices that will bring the speed and quality of optical transmission closer to the circuit board. Contributed by active experts, most from...