You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Mechanics Over Micro and Nano Scales covers the recent developments in the fields of mechanics in all forms over micro, meso and nano scales. Special emphasis is given to related novel applications and includes fundamental aspects of fluid and solid mechanics, soft matters, scaling laws, and synthetic biology. At the micro and nano scales, realization of many technologically viable ideas relies on the skillful integration of mechanics at macroscopic and molecular levels, both for solids as well as fluids. Research in the related areas is no longer confined to the understanding of the governing the physics of the system, but is also responsible for triggering a technological revolution at sma...
Green Energy: Basic Concepts and Fundamentals addresses the need for diversity within energy systems. It focuses on the theme of energy diversity with local resources, and the integration and optimisation of conventional and alternative energy systems. The book provides a summary of the state-of-art knowledge and technology for future energy systems, covering topics such as: • green energy carriers; • emission control, reduction, and abatement; • energy conversation and management; and • energy environment interaction. This first book in the Progress in Green Energy series will be of value to energy researchers, technology developers and professionals from policy makers to engineers, as well as to advanced undergraduate and postgraduates studying in the field.
This volume in the acclaimed series Modern Aspects of Electrochemistry starts with a dedication to the late Professor Brian Conway who for 50 years helped to guide this series to its current prominence. The remainder of the volume is then devoted to the following topics: PEM fuel cells; the use of graphs in electrochemical reaction newtworks; nanomaterials in Lithium-ion batteries; direct methanolf fuel cells (two chapters); fuel cell catalyst layers. The book is for electrochemists, electrochemical engineers, fuel cell workers and energy generation workers.
This edited volume, with contributions from the Computer Aided Engineering for Batteries (CAEBAT) program, provides firsthand insights into nuances of implementing battery models in actual geometries. It discusses practical examples and gaps in our understanding, while reviewing in depth the theoretical background and algorithms. Over the last ten years, several world-class academics, automotive original equipment manufacturers (OEMs), battery cell manufacturers and software developers worked together under an effort initiated by the U.S. Department of Energy to develop mature, validated modeling tools to simulate design, performance, safety and life of automotive batteries. Until recently, battery modeling was a niche focus area with a relatively small number of experts. This book opens up the research topic for a broader audience from industry and academia alike. It is a valuable resource for anyone who works on battery engineering but has limited hands-on experience with coding.
This volume comprises the proceedings of the 42nd National and 5th International Conference on Fluid Mechanics and Fluid Power held at IIT Kanpur in December, 2014.The conference proceedings encapsulate the best deliberations held during the conference. The diversity of participation in the conference, from academia, industry and research laboratories reflects in the articles appearing in the volume. This contributed volume has articles from authors who have participated in the conference on thematic areas such as Fundamental Issues and Perspectives in Fluid Mechanics; Measurement Techniques and Instrumentation; Computational Fluid Dynamics; Instability, Transition and Turbulence; Turbomachinery; Multiphase Flows; Fluid‐Structure Interaction and Flow‐Induced Noise; Microfluidics; Bio‐inspired Fluid Mechanics; Internal Combustion Engines and Gas Turbines; and Specialized Topics. The contents of this volume will prove useful to researchers from industry and academia alike.
The symposium was devoted to all aspects of research development and engineering of proton exchange membrane fuel cells. Three subareas were covered: materials and electrode processes, fuel cell systems, and durability.
This comprehensive handbook presents fundamental aspects, fabrication techniques, introductory materials on microbiology and chemistry, measurement techniques, and applications of microfluidics and nanofluidics. The first volume of the handbook focuses on physics and transport phenomena along with life sciences and related applications. It provides newcomers with the fundamental science background required for the study of microfluidics and nanofluidics. In addition, the advanced techniques and concepts described in the text will benefit experienced researchers and professionals.
This volume, presented by leading experts in the field, covers the latest advances in diagnostics and modeling of polymer electrolyte fuel cells, from understanding catalyst layer durability to start-up under freezing conditions.
A one-stop resource for both researchers and development engineers, this comprehensive handbook serves as a daily reference, replacing heaps of individual papers. This second edition features twenty percent more content with new chapters on battery characterization, process technology, failure mechanisms and method development, plus updated information on classic batteries as well as entirely new results on advanced approaches. The authors, from such leading institutions as the US National Labs and from companies such as Panasonic and Sanyo, present a balanced view on battery research and large-scale applications. They follow a distinctly materials-oriented route through the entire field of battery research, thus allowing readers to quickly find the information on the particular materials system relevant to their research.
Thermal energy is present in all aspects of our lives, including when cooking, driving, or turning on the heat or air conditioning. Sometimes this thermal management is not evident, but it is essential for our comfort and lifestyle. In addition, heat transfer is vital in many industrial processes. Thermal energy analysis is a complex task that usually requires different approaches. With five sections, this book provides information on heat transfer problems and using experimental techniques and computational models to analyse them.