You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents a selection of advanced lectures from leading researchers, providing recent theoretical results on strongly coupled quantum field theories. It also analyzes their use for describing new quantum states, which are physically realizable in condensed matter, cold-atomic systems, as well as artificial materials. It particularly focuses on the engineering of these states in quantum devices and novel materials useful for quantum information processing. The book offers graduate students and young researchers in the field of modern condensed matter theory an updated review of the most relevant theoretical methods used in strongly coupled field theory and string theory. It also prov...
This book is especially addressed to young researchers in theoretical physics with a basic background in Field Theory and Condensed Matter Physics. The topics were chosen so as to offer the largest possible overlap between the two expertises, selecting a few key problems in Condensed Matter Theory which have been recently revisited within a field-theoretic approach. The presentation of the material is aimed not only at providing the reader with an overview of this exciting frontier area of modern theoretical physics, but also at elucidating most of the tools needed for a technical comprehen sion of the many papers appearing in current issues of physics journals and, hopefully, to enable the reader to tackle research problems in this area of physics. This makes the material a live creature: while not pretending it to be exhaustive, it is tutorial enough to be useful to young researchers as a starting point in anyone of the topics covered in the book.
This book presents a careful selection of the most important developments of the \phi^4 model, offering a judicious summary of this model with a view to future prospects and the challenges ahead. Over the past four decades, the \phi^4 model has been the basis for a broad array of developments in the physics and mathematics of nonlinear waves. From kinks to breathers, from continuum media to discrete lattices, from collisions of solitary waves to spectral properties, and from deterministic to stochastic models of \phi^4 (and \phi^6, \phi^8, \phi^12 variants more recently), this dynamical model has served as an excellent test bed for formulating and testing the ideas of nonlinear science and solitary waves.
During July and August of 1976 a group of 90 physicists from 56 laboratories in 21 countries met in Erice for the 14th Course of the International School of Subnuclear Physics. The countries represented were Argentina, Australia, Austria, Belgium, Denmark, the Federal Republic of Germany, France, the German Democratic Republic, Greece, Israel, Italy, Japan, Mexico, Nigeria, Norway, Sweden, the United Kingdom, the United States of America, Vietnam, and Yugoslavia. The School was sponsored by the Italian Ministry of Public Education (MPI), the Italian Ministry of Scientific and Technological Research (MRST), the North Atlantic Treaty Organi zation (NATO), the Regional Sicilian Government (ERS)...
This book addresses the issues of nonlinearity and disorder. It covers mathematical and numerical techniques as well as applications of nonlinearity and disorder. The analysis of continuous and discrete systems is also shown.
Justbefore the preliminary programof Orbis Scientiae 1998 went to press the news in physics was suddenly dominated by the discovery that neutrinos are, after all, massive particles. This was predicted by some physicists including Dr. Behram Kusunoglu, who had apaper published on this subject in 1976 in the Physical Review. Massive neutrinos do not necessarily simplify the physics of elementary particles but they do give elementary particle physics a new direction. If the dark matter content ofthe universe turns out to consist ofneutrinos, the fact that they are massive should make an impact on cosmology. Some of the papers in this volume have attempted to provide answers to these questions. ...
Faithful communication is a necessary precondition for large-scale quantum information processing and networking, irrespective of the physical platform. Thus, the problems of quantum-state transfer and quantum-network engineering have attracted enormous interest over the last years, and constitute one of the most active areas of research in quantum information processing. The present volume introduces the reader to fundamental concepts and various aspects of this exciting research area, including links to other related areas and problems. The implementation of state-transfer schemes and the engineering of quantum networks are discussed in the framework of various quantum optical and condensed matter systems, emphasizing the interdisciplinary character of the research area. Each chapter is a review of theoretical or experimental achievements on a particular topic, written by leading scientists in the field. The volume aims at both newcomers as well as experienced researchers.
The first comprehensive survey of (2+1)-dimensional quantum gravity - for graduate students and researchers.
Superconductivity is the ability of certain materials to conduct electrical current with no resistance and extremely low losses. High temperature superconductors, such as La2-xSrxCuOx (Tc=40K) and YBa2Cu3O7-x (Tc=90K), were discovered in 1987 and have been actively studied since. In spite of an intense, world-wide, research effort during this time, a complete understanding of the copper oxide (cuprate) materials is still lacking. Many fundamental questions are unanswered, particularly the mechanism by which high-Tc superconductivity occurs. More broadly, the cuprates are in a class of solids with strong electron-electron interactions. An understanding of such "strongly correlated" solids is perhaps the major unsolved problem of condensed matter physics with over ten thousand researchers working on this topic. This book presents new and important research from around the world.