You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume introduces a general method for building infinite mathematical structures and surveys applications in algebra and model theory. It covers basic model theory and examines a variety of algebraic applications, including completeness for Magidor-Malitz quantifiers, Shelah's recent and sophisticated omitting types theorem for L(Q), and applications to Boolean algebras. Over 160 exercises. 1985 edition.
This book presents the theory of proper forcing and its relatives from the beginning. No prior knowledge of forcing is required.
This volume contains selected expository lectures delivered at the annual Maurice Auslander Distinguished Lectures and International Conference over the last several years. Reflecting the diverse landscape of modern representation theory of algebras, the selected articles include: a quick introduction to silting modules; a survey on the first decade of co-t-structures in triangulated categories; a functorial approach to the notion of module; a representation-theoretic approach to recollements in abelian categories; new examples of applications of relative homological algebra; connections between Coxeter groups and quiver representations; and recent progress on limits of approximation theory.
The handbook is divided into four parts: model theory, set theory, recursion theory and proof theory. Each of the four parts begins with a short guide to the chapters that follow. Each chapter is written for non-specialists in the field in question. Mathematicians will find that this book provides them with a unique opportunity to apprise themselves of developments in areas other than their own.
This book is concerned with the role played by modules of infinite length when dealing with problems in the representation theory of groups and algebras, but also in topology and geometry; it shows the intriguing interplay between finite and infinite length modules.
This book contains the proceedings of the AMS Special Session, in honor of S. K. Jain's 80th birthday, on Categorical, Homological and Combinatorial Methods in Algebra held from March 16–18, 2018, at Ohio State University, Columbus, Ohio. The articles contained in this volume aim to showcase the current state of art in categorical, homological and combinatorial aspects of algebra.
A conference on Abelian Group Theory was held at the Manoa Campus of the University of Hawaii from December 28, 1982 to January 4, 1983. It was probably the best attended conference on Abelian Group Theory to date with 55 participants from allover the world and the busiest one with 49 talks. A special feature were general interest lectures by Hyman Bass, Columbia University, on "Non-linear Algebra", and by Claus Michael Ringel, Uni versiUit Bielefeld, on "Representations of Algebras". The Conference offered surveys by Laszlo Fuchs, Tulane University, on "Torsion Modules over Valuation Rings", Fred Richman, New Mexico State University, on "Mixed Groups", Paul Eklof, University of California a...
Orders: Description and Roles
Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it is worthwhile to pursue the quest. In addition to the primary information given in the Handbook, ther...
Logic Colloquium 76, Proceedings of a conference