You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Hermann Weyl considered value distribution theory to be the greatest mathematical achievement of the first half of the 20th century. The present lectures show that this beautiful theory is still growing. An important tool is complex approximation and some of the lectures are devoted to this topic. Harmonic approximation started to flourish astonishingly rapidly towards the end of the 20th century, and the latest development, including approximation manifolds, are presented here. Since de Branges confirmed the Bieberbach conjecture, the primary problem in geometric function theory is to find the precise value of the Bloch constant. After more than half a century without progress, a breakthrough was recently achieved and is presented. Other topics are also presented, including Jensen measures. A valuable introduction to currently active areas of complex analysis and potential theory. Can be read with profit by both students of analysis and research mathematicians.
Classic contributions to the theory of nonlinear oscillations from the acclaimed Annals of Mathematics Studies series Princeton University Press is proud to have published the Annals of Mathematics Studies since 1940. One of the oldest and most respected series in science publishing, it has included many of the most important and influential mathematical works of the twentieth century. The series continues this tradition as Princeton University Press publishes the major works of the twenty-first century. To mark the continued success of the series, all books are available in paperback and as ebooks.
The aim of this book is to unite the seemingly disparate topics of Clifford algebras, analysis on manifolds, and harmonic analysis. The authors show how algebra, geometry, and differential equations play a more fundamental role in Euclidean Fourier analysis. They then link their presentation of the Euclidean theory naturally to the representation theory of semi-simple Lie groups.
A glorious period of Hungarian mathematics started in 1900 when Lipót Fejér discovered the summability of Fourier series.This was followed by the discoveries of his disciples in Fourier analysis and in the theory of analytic functions. At the same time Frederic (Frigyes) Riesz created functional analysis and Alfred Haar gave the first example of wavelets. Later the topics investigated by Hungarian mathematicians broadened considerably, and included topology, operator theory, differential equations, probability, etc. The present volume, the first of two, presents some of the most remarkable results achieved in the twentieth century by Hungarians in analysis, geometry and stochastics. The book is accessible to anyone with a minimum knowledge of mathematics. It is supplemented with an essay on the history of Hungary in the twentieth century and biographies of those mathematicians who are no longer active. A list of all persons referred to in the chapters concludes the volume.
The notions of positive functions and of reproducing kernel Hilbert spaces play an important role in various fields of mathematics, such as stochastic processes, linear systems theory, operator theory, and the theory of analytic functions. Also they are relevant for many applications, for example to statistical learning theory and pattern recognition. The present volume contains a selection of papers which deal with different aspects of reproducing kernel Hilbert spaces. Topics considered include one complex variable theory, differential operators, the theory of self-similar systems, several complex variables, and the non-commutative case. The book is of interest to a wide audience of pure and applied mathematicians, electrical engineers and theoretical physicists.
Bounded Analytic Functions
Complex Proofs of Real Theorems is an extended meditation on Hadamard's famous dictum, ``The shortest and best way between two truths of the real domain often passes through the imaginary one.'' Directed at an audience acquainted with analysis at the first year graduate level, it aims at illustrating how complex variables can be used to provide quick and efficient proofs of a wide variety of important results in such areas of analysis as approximation theory, operator theory, harmonic analysis, and complex dynamics. Topics discussed include weighted approximation on the line, Muntz's theorem, Toeplitz operators, Beurling's theorem on the invariant spaces of the shift operator, prediction the...
This volume is devoted to some topical problems and various applications of operator theory and its interplay with modern complex analysis. 30 carefully selected surveys and research papers are united by the "operator theoretic ideology" and systematic use of modern function theoretical techniques.
With the groundwork laid in the first volume (EMS 15) of the Commutative Harmonic Analysis subseries of the Encyclopaedia, the present volume takes up four advanced topics in the subject: Littlewood-Paley theory for singular integrals, exceptional sets, multiple Fourier series and multiple Fourier integrals.