You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Collection of minature mathematical puzzles for students and general readers.
This is a challenging problem-solving book in Euclidean geometry, assuming nothing of the reader other than a good deal of courage. Topics covered included cyclic quadrilaterals, power of a point, homothety, triangle centers; along the way the reader will meet such classical gems as the nine-point circle, the Simson line, the symmedian and the mixtilinear incircle, as well as the theorems of Euler, Ceva, Menelaus, and Pascal. Another part is dedicated to the use of complex numbers and barycentric coordinates, granting the reader both a traditional and computational viewpoint of the material. The final part consists of some more advanced topics, such as inversion in the plane, the cross ratio...
In July 2009 Germany hosted the 50th International Mathematical Olympiad (IMO). For the very first time the number of participating countries exceeded 100, with 104 countries from all continents. Celebrating the 50th anniversary of the IMO provides an ideal opportunity to look back over the past five decades and to review its development to become a worldwide event. This book is a report about the 50th IMO as well as the IMO history. A lot of data about all the 50 IMOs are included. We list the most successful contestants, the results of the 50 Olympiads and the 112 countries that have ever taken part. It is impressive to see that many of the world’s leading research mathematicians were among the most successful IMO participants in their youth. Six of them gave presentations at a special celebration: Bollobás, Gowers, Lovász, Smirnov, Tao and Yoccoz. This book is aimed at students in the IMO age group and all those who have interest in this worldwide leading competition for highschool students.
Presents the problems and answers for the first 50 years of the Alberta High School Mathematics Competition, up to 2005-2006. Full solutions are provided to those from the Modern period, often supplemented with multiple solutions or additional commentaries.
This third volume of problems from the William Lowell Putnam Competition is unlike the previous two in that it places the problems in the context of important mathematical themes. The authors highlight connections to other problems, to the curriculum and to more advanced topics. The best problems contain kernels of sophisticated ideas related to important current research, and yet the problems are accessible to undergraduates. The solutions have been compiled from the American Mathematical Monthly, Mathematics Magazine and past competitors. Multiple solutions enhance the understanding of the audience, explaining techniques that have relevance to more than the problem at hand. In addition, the book contains suggestions for further reading, a hint to each problem, separate from the full solution and background information about the competition. The book will appeal to students, teachers, professors and indeed anyone interested in problem solving as a gateway to a deep understanding of mathematics.
The Mathematical Olympiad examinations, covering the USA Mathematical Olympiad (USAMO) and the International Mathematical Olympiad (IMO), have been published annually since 1976. This is the fourth volume in that series. The IMO is a world mathematics competition for high school students that takes place each year in a different country. Students from all over the world participate in this competition. These Olympiad style exams consist of several challenging essay-type problems. Although a correct and complete solution to an Olympiad problem often requires deep analysis and careful argument, the problems require no more than a solid background in high school mathematics coupled with a dose ...
A large range of problems drawn from mathematics olympiads from around the world.
Any high school student preparing for the American Mathematics Competitions should get their hands on a copy of this book! A major aspect of mathematical training and its benefit to society is the ability to use logic to solve problems. The American Mathematics Competitions (AMC) have been given for more than fifty years to millions of high school students. This book considers the basic ideas behind the solutions to the majority of these problems, and presents examples and exercises from past exams to illustrate the concepts. Anyone taking the AMC exams or helping students prepare for them will find many useful ideas here. But people generally interested in logical problem solving should als...
Combinatorics, or the art and science of counting, is a vibrant and active area of pure mathematical research with many applications. The Unity of Combinatorics succeeds in showing that the many facets of combinatorics are not merely isolated instances of clever tricks but that they have numerous connections and threads weaving them together to form a beautifully patterned tapestry of ideas. Topics include combinatorial designs, combinatorial games, matroids, difference sets, Fibonacci numbers, finite geometries, Pascal's triangle, Penrose tilings, error-correcting codes, and many others. Anyone with an interest in mathematics, professional or recreational, will be sure to find this book bot...
Problems and solutions from Mathematical Olympiad. Ideal for anyone interested in mathematical problem solving.