You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Multiscale problems naturally pose severe challenges for computational science and engineering. The smaller scales must be well resolved over the range of the larger scales. Challenging multiscale problems are very common and are found in e.g. materials science, fluid mechanics, electrical and mechanical engineering. Homogenization, subgrid modelling, heterogeneous multiscale methods, multigrid, multipole, and adaptive algorithms are examples of methods to tackle these problems. This volume is an overview of current mathematical and computational methods for problems with multiple scales with applications in chemistry, physics and engineering.
Most problems in science involve many scales in time and space. An example is turbulent ?ow where the important large scale quantities of lift and drag of a wing depend on the behavior of the small vortices in the boundarylayer. Another example is chemical reactions with concentrations of the species varying over seconds and hours while the time scale of the oscillations of the chemical bonds is of the order of femtoseconds. A third example from structural mechanics is the stress and strain in a solid beam which is well described by macroscopic equations but at the tip of a crack modeling details on a microscale are needed. A common dif?culty with the simulation of these problems and many ot...
This book consists of 37 articles dealing with simulation of incompressible flows and applications in many areas. It covers numerical methods and algorithm developments as well as applications in aeronautics and other areas. It represents the state of the art in the field.
This series of volumes on the OC Frontiers of Computational Fluid DynamicsOCO was introduced to honor contributors who have made a major impact on the field. The first volume was published in 1994 and was dedicated to Prof Antony Jameson; the second was published in 1998 and was dedicated to Prof Earl Murman. The volume is dedicated to Prof Robert MacCormack. The twenty-six chapters in the current volume have been written by leading researchers from academia, government laboratories, and industry. They present up-to-date descriptions of recent developments in techniques for numerical analysis of fluid flow problems, and applications of these techniques to important problems in industry, as w...
Embark on a riveting journey through the study of social complexity with The Atlas of Social Complexity. Over three decades of scientific exploration unfold, unravelling the enigmatic threads that compose the fabric of society. From the dance of bacteria, to human-machine interactions, to the ever-shifting dynamics of power in social networks, this Atlas maps the evolution of our understanding of social complexity.
Aerodynamic design of aircraft presented with realistic applications, using CFD software. Tutorials, exercises, and mini-projects provided involve design of real aircraft. Using online resources and supplements, this text prepares last-year undergraduates and first-year graduate students for industrial aerospace design and analysis tasks.
This work addresses the increasingly important role of numerical methods in science and engineering. It combines traditional and well-developed topics with other material such as interval arithmetic, elementary functions, operator series, convergence acceleration, and continued fractions.
This volume presents the proceedings of the First International workshop on Parallel Scientific Computing, PARA '94, held in Lyngby, Denmark in June 1994. It reports interdisciplinary work done by mathematicians, scientists and engineers working on large-scale computational problems in discussion with computer science specialists in the field of parallel methods and the efficient exploitation of modern high-performance computing resources. The 53 full refereed papers provide a wealth of new results: an up-to-date overview on high-speed computing facilities, including different parallel and vector computers as well as workstation clusters, is given and the most important numerical algorithms, with a certain emphasis on computational linear algebra, are investigated.
Linear complementarity problems (LCPs) have for many years been used in physics-based animation to model contact forces between rigid bodies in contact. More recently, LCPs have found their way into the realm of fluid dynamics. Here, LCPs are used to model boundary conditions with fluid-wall contacts. LCPs have also started to appear in deformable models and granular simulations. There is an increasing need for numerical methods to solve the resulting LCPs with all these new applications. This book provides a numerical foundation for such methods, especially suited for use in computer graphics. This book is mainly intended for a researcher/Ph.D. student/post-doc/professor who wants to study ...