You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This handbook delivers an up-to-date, comprehensive and authoritative coverage of the broad field of surface science, encompassing a range of important materials such metals, semiconductors, insulators, ultrathin films and supported nanoobjects. Over 100 experts from all branches of experiment and theory review in 39 chapters all major aspects of solid-state surfaces, from basic principles to applications, including the latest, ground-breaking research results. Beginning with the fundamental background of kinetics and thermodynamics at surfaces, the handbook leads the reader through the basics of crystallographic structures and electronic properties, to the advanced topics at the forefront of current research. These include but are not limited to novel applications in nanoelectronics, nanomechanical devices, plasmonics, carbon films, catalysis, and biology. The handbook is an ideal reference guide and instructional aid for a wide range of physicists, chemists, materials scientists and engineers active throughout academic and industrial research.
Advances in Semiconductor Technologies Discover the broad sweep of semiconductor technologies in this uniquely curated resource Semiconductor technologies and innovations have been the backbone of numerous different fields: electronics, online commerce, the information and communication industry, and the defense industry. For over fifty years, silicon technology and CMOS scaling have been the central focus and primary driver of innovation in the semiconductor industry. Traditional CMOS scaling has approached some fundamental limits, and as a result, the pace of scientific research and discovery for novel semiconductor technologies is increasing with a focus on novel materials, devices, desig...
The MRS Symposium Proceeding series is an internationally recognised reference suitable for researchers and practitioners. This book studies the effect of nanometer-scale structure and confinement on degradation processes and analyzes the experimental and theoretical approaches used to estimate the lifetime of nanostructured and nanoconfined materials in various environments.
Based partly on the original importers' catalogues and partly on the wide range of pieces handled by the author Bryan Catley, a leading specialist in the subject, this book covers a comprehensive range of art deco figures. Between the wars, an entirely modern style of decorative sculpture emerged which was a complete break with the heavy romantic late 19th century schools, and was totally in sympathy with the vibrant young society of the 1920s. The use of bronze and ivory for the great number of these sensual figures in no way obscures the the fact that many are of exceptionally high quality; add to this their sense of movement and rhythm and one realises that the large sums thay now command is a reflection of a discriminative international collectors' market. This new revised edition provides a comprehensive listing of the great variety and range of figures, of which there are still more to be found.
This book of problems and solutions in classical mechanics is dedicated to junior or senior undergraduate students in physics, engineering, applied mathematics, astronomy, or chemistry who may want to improve their problems solving skills, or to freshman graduate students who may be seeking a refresh of the material. The book is structured in ten chapters, starting with Newton’s laws, motion with air resistance, conservation laws, oscillations, and the Lagrangian and Hamiltonian Formalisms. The last two chapters introduce some ideas in nonlinear dynamics, chaos, and special relativity. Each chapter starts with a brief theoretical outline, and continues with problems and detailed solutions. A concise presentation of differential equations can be found in the appendix. A variety of problems are presented, from the standard classical mechanics problems, to context-rich problems and more challenging problems. Key features: Presents a theoretical outline for each chapter. Motivates the students with standard mechanics problems with step-by-step explanations. Challenges the students with more complex problems with detailed solutions.
Photoemission (also known as photoelectron) spectroscopy refers to the process in which an electron is removed from a specimen after the atomic absorption of a photon. The first evidence of this phenomenon dates back to 1887 but it was not until 1905 that Einstein offered an explanation of this effect, which is now referred to as ""the photoelectric effect"". Quantitative Core Level Photoelectron Spectroscopy: A Primer tackles the pragmatic aspects of the photoemission process with the aim of introducing the reader to the concepts and instrumentation that emerge from an experimental approach. The basic elements implemented for the technique are discussed and the geometry of the instrumentation is explained. The book covers each of the features that have been observed in the X-ray photoemission spectra and provides the tools necessary for their understanding and correct identification. Charging effects are covered in the penultimate chapter with the final chapter bringing closure to the basic uses of the X-ray photoemission process, as well as guiding the reader through some of the most popular applications used in current research.
Half-metals are particular ferromagnetic materials which can be considered as hybrids between metals and semiconductors. A particular feature of these materials is that electrons at the Fermi level show complete spin polarization making them prime targets for research into suitable divices for spin electronics. This book is both an introduction and state-of-art survey of the latest advances in the understanding and applications of Heusler alloys and related compounds.