You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book provides guidance on the properties, specification, testing, and the latest methods for effective production of glassfibre reinforced concrete.
The 3rd International Symposium on Nanotechnology in Construction (NICOM 3) follows the highly successful NICOM 1 (Paisley, UK 2003) and NICOM 2 (Bilbao, Spain 2005) Symposia. The NICOM3 symposium was held in Prague, Czech Republic from May 31 to June 2, 2009 under the auspices of the Czech Technical University in Prague. It was a cross-disciplinary event, bringing together R&D experts and users from different fields all with interest in nanotechnology and construction. The conference was aimed at: Understanding of internal structures of existing construction materials at nano-scale Modification at nano-scale of existing construction materials. Production and properties of nanoparticulate materials, nanotubes and novel polymers. Modeling and simulation of nanostructures. Instrumentation, techniques and metrology at nano-scale. Health and safety issues and environmental impacts related to nanotechnology during research, manufacture and product use. Review of current legislation. Societal and commercial impacts of nanotechnology in construction, their predictions and analysis.
This book forms the Proceedings of the International RILEM Workshop held in Paisley in March 1993. It contains contributions on theoretical and practical aspects of the use of special concretes, with a particular focus on their behaviour in the fresh state.
This work deals with numerical simulations of fresh concrete flows. After the first introductory chapter dealing with the various physical phenomena involved in flows of fresh cementitious materials, the aim of the second chapter is to give an overview of the work carried out on simulation of flow of cement-based materials using computational fluid dynamics (CFD). This includes governing equations, constitutive equations, analytical and numerical solutions, and examples showing simulations of testing, mixing and castings. The third chapter focuses on the application of Discrete Element Method (DEM) in simulating the flow of fresh concrete. The fourth chapter is an introductory text about numerical errors both in CFD and DEM whereas the fifth and last chapter give some recent examples of numerical simulations developed by various authors in order to simulate the presence of grains or fibers in a non-Newtonian cement matrix.
This book captures the state of the art of the durability of fibre-reinforced strain-hardening cement-based composites (SHCC) and the durability of structures or structural elements manufactured in full or in part with this class of modern construction materials. Highlights include: - Reflection on durability performance of existing applications in patch repair, a water reservoir and highway bridges. - Guidelines for tensile testing towards durability assessment of cracked SHCC. - New crack pattern related ingress rate indices for water and chloride into cracked SHCC. - The influence of low and high temperatures on SHCC durability performance. - The mechanism of crack control reducing ASR and corrosion rate, and results on chloride-induced corrosion of embedded steel reinforcement. - Self-healing of cracks in SHCC. - A conceptual durability design framework for SHCC and R/SHCC structures and members.
This volume highlights the latest advances, innovations, and applications in the field of fibre reinforced concrete (FRC) and discusses a diverse range of topics concerning FRC: rheology and early-age properties, mechanical properties, codes and standards, long-term properties, durability, analytical and numerical models, quality control, structural and Industrial applications, smart FRC’s, nanotechnologies related to FRC, textile reinforced concrete, structural design and UHPFRC. The contributions present improved traditional and new ideas that will open novel research directions and foster multidisciplinary collaboration between different specialists. Although the symposium was postponed, the book gathers peer-reviewed papers selected in 2020 for the RILEM-fib International Symposium on Fibre Reinforced Concrete (BEFIB).
This book gathers peer-reviewed contributions presented at the 3rd International Conference on Innovative Technologies for Clean and Sustainable Development, held in Chandigarh, India, on February 19-21, 2020. The respective papers focus on sustainable materials science and cover topics including the durability and sustainability of concrete, green materials in construction, economics of cleaner production, environmental impact mitigation, innovative materials for sustainable construction, performance and sustainability of special concrete, renewable energy infrastructure, sustainability in road construction, sustainable concrete, sustainable construction materials, waste minimization & management, prevention and management of water pollution, and zero-energy buildings.
This volume highlights the latest advances, innovations, and applications in the field of sustainable concrete structures, as presented by scientists and engineers at the RILEM International Conference on Numerical Modeling Strategies for Sustainable Concrete Structures (SSCS), held in Marseille, France, on July 4-6, 2022. It demonstrates that numerical methods (finite elements, finite volumes, finite differences) are a relevant response to the challenge to optimize the utilization of cement in concrete constructions while checking that these constructions have a lifespan compatible with the stakes of sustainable development. They are indeed accurate tools for an optimized design of concrete...
The International Symposium in Brittle Matrix Composites October 13-15, 2003 covers a wide spectrum of topics including cement based composites, ceramic composites and brittle polymer matrix composites. In the papers various topics and issues are considered such as: analytical and numerical studies related to the design of composites, prediction of behaviour and verification of strength and stability, testing methods, manufacturing processes and repair, environmental effects and durability assessment. The present volume of 55 papers proves that there are still many problems in the field of brittle matrix composites deserving theoretical and experimental investigations and that new solutions to these problems are needed for practical application in civil engineering, industrial structures, machinery and other domains.
Self-healing materials are man-made materials which have the built-in capability to repair damage. Failure in materials is often caused by the occurrence of small microcracks throughout the material. In self-healing materials phenomena are triggered to counteract these microcracks. These processes are ideally triggered by the occurrence of damage itself. Thus far, the self-healing capacity of cement-based materials has been considered as something "extra". This could be called passive self-healing, since it was not a designed feature of the material, but an inherent property of it. Centuries-old buildings have been said to have survived these centuries because of the inherent self-healing capacity of the binders used for cementing building blocks together. In this State-of-the-Art Report a closer look is taken at self-healing phenomena in cement-based materials. It is shown what options are available to design for this effect rather than have it occur as a "coincidental extra".