You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A state of the art volume on statistical causality Causality: Statistical Perspectives and Applications presents a wide-ranging collection of seminal contributions by renowned experts in the field, providing a thorough treatment of all aspects of statistical causality. It covers the various formalisms in current use, methods for applying them to specific problems, and the special requirements of a range of examples from medicine, biology and economics to political science. This book: Provides a clear account and comparison of formal languages, concepts and models for statistical causality. Addresses examples from medicine, biology, economics and political science to aid the reader's understanding. Is authored by leading experts in their field. Is written in an accessible style. Postgraduates, professional statisticians and researchers in academia and industry will benefit from this book.
Probabilistic expert systems are graphical networks which support the modeling of uncertainty and decisions in large complex domains, while retaining ease of calculation. Building on original research by the authors, this book gives a thorough and rigorous mathematical treatment of the underlying ideas, structures, and algorithms. The book will be of interest to researchers in both artificial intelligence and statistics, who desire an introduction to this fascinating and rapidly developing field. The book, winner of the DeGroot Prize 2002, the only book prize in the field of statistics, is new in paperback.
Provides a foundation for probability based on game theory rather than measure theory. A strong philosophical approach with practical applications. Presents in-depth coverage of classical probability theory as well as new theory.
Algorithmic Learning in a Random World describes recent theoretical and experimental developments in building computable approximations to Kolmogorov's algorithmic notion of randomness. Based on these approximations, a new set of machine learning algorithms have been developed that can be used to make predictions and to estimate their confidence and credibility in high-dimensional spaces under the usual assumption that the data are independent and identically distributed (assumption of randomness). Another aim of this unique monograph is to outline some limits of predictions: The approach based on algorithmic theory of randomness allows for the proof of impossibility of prediction in certain situations. The book describes how several important machine learning problems, such as density estimation in high-dimensional spaces, cannot be solved if the only assumption is randomness.
Properly developed algorithms can reduce incarceration and help policymakers adopt more legally sophisticated bail and sentencing practices.
From measles to COVID, discover how data allied with statistical and probabilistic reasoning are essential to making rational decisions.
This volume, the third in this Springer series, contains selected papers from the four workshops organized by the ESF Research Networking Programme "The Philosophy of Science in a European Perspective" (PSE) in 2010: Pluralism in the Foundations of Statistics Points of Contact between the Philosophy of Physics and the Philosophy of Biology The Debate on Mathematical Modeling in the Social Sciences Historical Debates about Logic, Probability and Statistics The volume is accordingly divided in four sections, each of them containing papers coming from the workshop focussing on one of these themes. While the programme's core topic for the year 2010 was probability and statistics, the organizers ...
Wolfgang Spohn presents the first full account of the dynamic laws of belief, by means of ranking theory, a relative of probability theory which he has pioneered since the 1980s. He offers novel insights into the nature of laws, the theory of causation, inductive reasoning and its experiential base, and a priori principles of reason.
This book brings together selected peer-reviewed contributions from various research fields in statistics, and highlights the diverse approaches and analyses related to real-life phenomena. Major topics covered in this volume include, but are not limited to, bayesian inference, likelihood approach, pseudo-likelihoods, regression, time series, and data analysis as well as applications in the life and social sciences. The software packages used in the papers are made available by the authors. This book is a result of the 47th Scientific Meeting of the Italian Statistical Society, held at the University of Cagliari, Italy, in 2014.
This is an authoritative collection of papers addressing the key challenges that face the Bayesian interpretation of probability today. The volume includes important criticisms of Bayesian reasoning and gives an insight into some of the points of disagreement amongst advocates of the Bayesian approach. It will be of interest to graduate students, researchers, those involved with the applications of Bayesian reasoning, and philosophers.