You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book demonstrates that nonparametric statistics can be taught from a parametric point of view. As a result, one can exploit various parametric tools such as the use of the likelihood function, penalized likelihood and score functions to not only derive well-known tests but to also go beyond and make use of Bayesian methods to analyze ranking data. The book bridges the gap between parametric and nonparametric statistics and presents the best practices of the former while enjoying the robustness properties of the latter. This book can be used in a graduate course in nonparametrics, with parts being accessible to senior undergraduates. In addition, the book will be of wide interest to statisticians and researchers in applied fields.
This book introduces advanced undergraduate, graduate students and practitioners to statistical methods for ranking data. An important aspect of nonparametric statistics is oriented towards the use of ranking data. Rank correlation is defined through the notion of distance functions and the notion of compatibility is introduced to deal with incomplete data. Ranking data are also modeled using a variety of modern tools such as CART, MCMC, EM algorithm and factor analysis. This book deals with statistical methods used for analyzing such data and provides a novel and unifying approach for hypotheses testing. The techniques described in the book are illustrated with examples and the statistical software is provided on the authors’ website.
"This book discusses advances in modern data mining research in today's rapidly growing global and technological environment"--Provided by publisher.
The topic of preferences is a new branch of machine learning and data mining, and it has attracted considerable attention in artificial intelligence research in previous years. It involves learning from observations that reveal information about the preferences of an individual or a class of individuals. Representing and processing knowledge in terms of preferences is appealing as it allows one to specify desires in a declarative way, to combine qualitative and quantitative modes of reasoning, and to deal with inconsistencies and exceptions in a flexible manner. And, generalizing beyond training data, models thus learned may be used for preference prediction. This is the first book dedicated...
Data mining and data modeling are hot topics and are under fast development. Because of their wide applications and rich research contents, many practitioners and academics are attracted to work in these areas. With a view to promoting communication and collaboration among the practitioners and researchers in Hong Kong, a workshop on data mining and modeling was held in June 2002. Prof Ngaiming Mok, Director of the Institute of Mathematical Research, The University of Hong Kong, and Prof Tze Leung Lai (Stanford University), C V Starr Professor of the University of Hong Kong, initiated the workshop. This book contains selected papers presented at the workshop. The papers fall into two main categories: data mining and data modeling. Data mining papers deal with pattern discovery, clustering algorithms, classification and practical applications in the stock market. Data modeling papers treat neural network models, time series models, statistical models and practical applications.
This volume in the Lecture Notes in Computer Science series contains accepted papers presented at IDEAL 2005, held in Brisbane, Australia, during July 6–8, 2005.
Since the waves of financial liberalization in the 1980s, emerging market economies have been accessible to foreign investors. Altogether, they contributed up to 43.8% of the global GDP in 2018, and many of them, such as China, India, Bangladesh, Philippines, Myanmar and Vietnam from 2010 to 2019, are among the fastest-growing economies in the world. Given the high economic growth, the assets issued by companies in emerging markets are viewed as a new set of investment opportunities for global investors and fund managers who seek to improve the risk-adjusted performance of their portfolios. In addition to their risky profile due to the lack of transparency as well as stable and matured insti...
The two volumes LNCS 9041 and 9042 constitute the proceedings of the 16th International Conference on Computational Linguistics and Intelligent Text Processing, CICLing 2015, held in Cairo, Egypt, in April 2015. The total of 95 full papers presented was carefully reviewed and selected from 329 submissions. They were organized in topical sections on grammar formalisms and lexical resources; morphology and chunking; syntax and parsing; anaphora resolution and word sense disambiguation; semantics and dialogue; machine translation and multilingualism; sentiment analysis and emotion detection; opinion mining and social network analysis; natural language generation and text summarization; information retrieval, question answering, and information extraction; text classification; speech processing; and applications.
Proceedings of the 19th international symposium on computational statistics, held in Paris august 22-27, 2010.Together with 3 keynote talks, there were 14 invited sessions and more than 100 peer-reviewed contributed communications.
This book constitutes the refereed proceedings of the 6th International Conference on Independent Component Analysis and Blind Source Separation, ICA 2006, held in Charleston, SC, USA, in March 2006. The 120 revised papers presented were carefully reviewed and selected from 183 submissions. The papers are organized in topical sections on algorithms and architectures, applications, medical applications, speech and signal processing, theory, and visual and sensory processing.