You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Biomass is a vital source of renewable energy, because it offers a wide range of established and potential methods for energy generation. It is also an important facet of the progression toward a sustainable energy future. The need for further development in the provision of bioenergy is underlined by challenges affecting the biomass resource base, including rising demand for biomass for food, feed, materials and fuel. This is underlined by significant concerns over factors relating to land, such as soil, nutrients and biodiversity. This book examines and analyzes Germany's decade-long initiative toward implementation of an active policy for the transition of the energy system to make greate...
Energy markets are already undergoing considerable transitions to accommodate new (renewable) energy forms, new (decentral) energy players, and new system requirements, e.g. flexibility and resilience. Traditional energy markets for fossil fuels are therefore under pressure, while not-yet-mature (renewable) energy markets are emerging. As a consequence, investments in large-scale and capital intensive (traditional) energy production projects are surrounded by high uncertainty, and are difficult to hedge by private entities. Traditional energy production companies are transforming into energy service suppliers and companies aggregating numerous potential market players are emerging, while reg...
Transitioning to Affordable and Clean Energy is a collective volume which combines original contributions and review papers that address the question how the transition to clean and affordable energy can be governed. It will cover both general analyses of the governance of transition, including policy instruments, comparative studies of countries or policies, and papers setting out scientifically sound visions of a clean and just energy system. In particular, the following aspects are foregrounded: • Governing the supply and demand side transformation • Geographical and cultural differences and their consequences for the governance of energy transitions • Sustainability and justice rel...
The deployment of onshore wind power involves spatial sustainability trade-offs, e.g., between the minimization of energy system costs, the mitigation of impacts on humans and biodiversity, and equity concerns. We analyze challenges arising for decision-making if wind power generation capacity has to be allocated spatially in the presence of such trade-offs. The analysis is based on a game developed for and played by stakeholders in Germany. The results of the game illustrate that there is no unanimously agreed ranking of sustainability criteria among the participating stakeholders. They disagreed not only on the weights of different criteria but also their definition and measurement. Group discussions further revealed that equity concerns mattered for spatial allocation. Yet, stakeholders used quite different concepts of equity. The results support the importance of transparent, multi-level and participatory approaches to take decisions on the spatial allocation of wind power generation capacity.
The deployment of onshore wind power is an important means to mitigate climate change. However, wind turbines also have negative impacts at the local scale, like disamenities to residents living nearby, changes in landscape quality, or conflicts with nature conservation. Our paper analyses how these impacts affect the optimal siting of wind turbines, as compared to a spatial allocation focused solely on minimizing generation costs. To quantify the spatial trade-offs between these criteria, we propose a novel approach using Pareto frontiers and a Gini-like potential trade-off indicator. Our analysis builds on a spatial optimization model using geographical information system data for Germany. We show that spatial trade-offs between the criteria under consideration are significant. The size of the trade-off varies substantially with the criteria under consideration, depending on the spatial heterogeneity of each criterion as well as on the spatial correlation between the criteria. Spatial trade-offs are particularly pronounced between nature conservation (measured by impacts on wind powersensitive birds) and other criteria.
Wind power and solar photovoltaics (PV) are crucial to meeting future energy needs while decarbonizing the power sector. Deployment of both technologies has expanded rapidly in recent years, one of the few bright spots in an otherwise bleak picture of clean energy progress. However, the inherent variability of wind power and solar PV raises unique and pressing questions. Can power systems remain reliable and cost-effective while supporting high shares of variable renewable energy (VRE)? And if so, how? Based on a thorough review of the integration challenge, this publication gauges the economic significance of VRE integration impacts, highlights the need for a system-wide approach to integrating high shares of VRE and recommends how to achieve a cost-effective transformation of the power system. This book summarizes the results of the third phase of the Grid Integration of VRE (GIVAR) project, undertaken by the IEA over the past two years. It is rooted in a set o
This book provides an introduction to energy economics. It shows how to apply general economic theory as well as empirical and advanced econometric methods to explain the drivers of energy markets and their development. Readers learn about the specific properties of energy markets as well as the physical, technological, environmental, and geopolitical particularities of energy sources and products. The book covers all types of energy markets, ranging from liquid fuels, gaseous fuels, and solid fuels to electricity. It also addresses emission allowances, energy efficiency, and nuclear risks. The authors discuss the engineering properties of energy technologies including renewables, the economics of natural resources and environmental protection, market liberalization, and energy trade as well as the experience of the German energy transformation. This book will serve students as a textbook and practitioners as a reference for their understanding of energy markets and their development.
Presents the state-of-the-art of model-based integration of ecology and economics in the field of biodiversity conservation.
None