You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This invaluable book provides a unique opportunity to embrace the complex and fascinating theory of relaxation processes in magnetized plasmas, both in astrophysics and in controlled fusion plasmas. The subjects range from dynamo and reconnection processes in magneto-hydrodynamics and electromagnetic turbulence to fast transport events in self-organized turbulence. Such phenomena, recognized as key bolts in our present understanding, turn out to be extremely challenging for theoretical models. This book efficiently helps to bridge our understanding and description of such processes, analogously observed in laboratory and astrophysical plasmas.
This book compiles the contributions from various international experts on magnetized plasma physics, both in controlled fusion and in astrophysics, and on atmospheric science. Most recent results are presented along with new ideas. The various facets of rotation and momentum transport in complex systems are discussed, including atmospheric-ocean turbulence, the constraints, and the concept of potential vorticity. The close interplay between flows and magnetohydrodynamics dynamo action, instabilities, turbulence and structure dynamics are the main focus of the book, in the context of astrophysics and magnetic fusion devices like Tokamak, and Reversed Field Pinch. Both physicists and advanced students interested in the field will find the topics as interesting as researchers from other fields who are looking to broaden their perspectives.
Stemming from the IHP trimester "Stochastic Dynamics Out of Equilibrium", this collection of contributions focuses on aspects of nonequilibrium dynamics and its ongoing developments. It is common practice in statistical mechanics to use models of large interacting assemblies governed by stochastic dynamics. In this context "equilibrium" is understood as stochastically (time) reversible dynamics with respect to a prescribed Gibbs measure. Nonequilibrium dynamics correspond on the other hand to irreversible evolutions, where fluxes appear in physical systems, and steady-state measures are unknown. The trimester, held at the Institut Henri Poincaré (IHP) in Paris from April to July 2017, comprised various events relating to three domains (i) transport in non-equilibrium statistical mechanics; (ii) the design of more efficient simulation methods; (iii) life sciences. It brought together physicists, mathematicians from many domains, computer scientists, as well as researchers working at the interface between biology, physics and mathematics. The present volume is indispensable reading for researchers and Ph.D. students working in such areas.
The main goal is to offer to readers a panorama of recent progress in nonlinear physics, complexity and transport with attractive chapters readable by a broad audience. It allows to gain an insight into these active fields of research and notably promotes the interdisciplinary studies from mathematics to experimental physics. To reach this aim, the book collects a selection of contributions to the third edition of the CCT conference (Marseilles, 1-5 June 2015).
None
Finite volume methods are used for various applications in fluid dynamics, magnetohydrodynamics, structural analysis or nuclear physics. A closer look reveals many interesting phenomena and mathematical or numerical difficulties, such as true error analysis and adaptivity, modelling of multi-phase phenomena or fitting problems, stiff terms in convection/diffusion equations and sources. To overcome existing problems and to find solution methods for future applications requires many efforts and always new developments. The goal of The International Symposium on Finite Volumes for Complex Applications VI is to bring together mathematicians, physicists and engineers dealing with Finite Volume Techniques in a wide context. This book, divided in two volumes, brings a critical look at the subject (new ideas, limits or drawbacks of methods, theoretical as well as applied topics).
Investigates the research and discoveries of scientists who explored the frontiers of physics and uncovered phenomena that often contradicted prevailing wisdom.
The methods considered in the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) have properties which offer distinct advantages for a number of applications. The second volume of the proceedings covers reviewed contributions reporting successful applications in the fields of fluid dynamics, magnetohydrodynamics, structural analysis, nuclear physics, semiconductor theory and other topics. The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many ...