You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book constitutes the refereed proceedings of the 15th International Conference on Discovery Science, DS 2012, held in Lyon, France, in October 2012. The 22 papers presented in this volume were carefully reviewed and selected from 46 submissions. The field of discovery science aims at inducing and validating new scientific hypotheses from data. The scope of this conference includes the development and analysis of methods for automatic scientific knowledge discovery, machine learning, intelligent data analysis, theory of learning, tools for supporting the human process of discovery in science, as well as their application to knowledge discovery.
This book presents recent advances in quality measures in data mining.
Statistical implicative analysis is a data analysis method created by Régis Gras almost thirty years ago which has a significant impact on a variety of areas ranging from pedagogical and psychological research to data mining. Statistical implicative analysis (SIA) provides a framework for evaluating the strength of implications; such implications are formed through common knowledge acquisition techniques in any learning process, human or artificial. This new concept has developed into a unifying methodology, and has generated a powerful convergence of thought between mathematicians, statisticians, psychologists, specialists in pedagogy and last, but not least, computer scientists specialized in data mining. This volume collects significant research contributions of several rather distinct disciplines that benefit from SIA. Contributions range from psychological and pedagogical research, bioinformatics, knowledge management, and data mining.
Over the course of the last twenty years, research in data mining has seen a substantial increase in interest, attracting original contributions from various disciplines including computer science, statistics, operations research, and information systems. Data mining supports a wide range of applications, from medical decision making, bioinformatics, web-usage mining, and text and image recognition to prominent business applications in corporate planning, direct marketing, and credit scoring. Research in information systems equally reflects this inter- and multidisciplinary approach, thereby advocating a series of papers at the intersection of data mining and information systems research. This special issue of Annals of Information Systems contains original papers and substantial extensions of selected papers from the 2007 and 2008 International Conference on Data Mining (DMIN’07 and DMIN’08, Las Vegas, NV) that have been rigorously peer-reviewed. The issue brings together topics on both information systems and data mining, and aims to give the reader a current snapshot of the contemporary research and state of the art practice in data mining.
This book constitutes the proceedings of the PAKDD 2009 International Workshops on New Frontiers in Applied Data Mining, held in Bangkok, Thailand in April 2010.
This book contains a selection of higher quality and reviewed papers of the 14th Portuguese Conference on Artificial Intelligence, EPIA 2009, held in Aveiro, Portugal, in October 2009. The 55 revised full papers presented were carefully reviewed and selected from a total of 163 submissions. The papers are organized in topical sections on artificial intelligence in transportation and urban mobility (AITUM), artificial life and evolutionary algorithms (ALEA), computational methods in bioinformatics and systems biology (CMBSB), computational logic with applications (COLA), emotional and affective computing (EAC), general artificial intelligence (GAI), intelligent robotics (IROBOT), knowledge discovery and business intelligence (KDBI), muli-agent systems (MASTA) social simulation and modelling (SSM), text mining and application (TEMA) as well as web and network intelligence (WNI).
The two-volume set LNAI 8443 + LNAI 8444 constitutes the refereed proceedings of the 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2014, held in Tainan, Taiwan, in May 2014. The 40 full papers and the 60 short papers presented within these proceedings were carefully reviewed and selected from 371 submissions. They cover the general fields of pattern mining; social network and social media; classification; graph and network mining; applications; privacy preserving; recommendation; feature selection and reduction; machine learning; temporal and spatial data; novel algorithms; clustering; biomedical data mining; stream mining; outlier and anomaly detection; multi-sources mining; and unstructured data and text mining.
This book constitutes the refereed proceedings of the 14th International Conference on Discovery Science, DS 2011, held in Espoo, Finland, in October 2011 - co-located with ALT 2011, the 22nd International Conference on Algorithmic Learning Theory. The 24 revised full papers presented together with 5 invited lectures were carefully revised and selected from 56 submissions. The papers cover a wide range including the development and analysis of methods for automatic scientific knowledge discovery, machine learning, intelligent data analysis, theory of learning, as well as their application to knowledge discovery.
ThePaci?c-AsiaConferenceonKnowledgeDiscoveryandDataMining(PAKDD) has been held every year since 1997. PAKDD 2008, the 12th in the series, was heldatOsaka,JapanduringMay20–23,2008.PAKDDisaleadinginternational conference in the area of data mining. It provides an international forum for - searchers and industry practitioners to share their new ideas, original research results, and practical development experiences from all KDD-related areas - cluding data mining, data warehousing, machine learning, databases, statistics, knowledge acquisition, automatic scienti?c discovery, data visualization, causal induction, and knowledge-based systems. This year we received a total of 312 research papers...
This book constitutes the proceedings of the 17th International Conference on Discovery Science, DS 2016, held in banff, AB, Canada in October 2015. The 30 full papers presented together with 5 abstracts of invited talks in this volume were carefully reviewed and selected from 60 submissions.The conference focuses on following topics: Advances in the development and analysis of methods for discovering scientific knowledge, coming from machine learning, data mining, and intelligent data analysis, as well as their application in various scientific domains.