You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Complex manifolds are smooth manifolds endowed with coordinate charts that overlap holomorphically. They have deep and beautiful applications in many areas of mathematics. This book is an introduction to the concepts, techniques, and main results about complex manifolds (mainly compact ones), and it tells a story. Starting from familiarity with smooth manifolds and Riemannian geometry, it gradually explains what is different about complex manifolds and develops most of the main tools for working with them, using the Kodaira embedding theorem as a motivating project throughout. The approach and style will be familiar to readers of the author's previous graduate texts: new concepts are introdu...
The papers in this wide-ranging collection report on the results of investigations from a number of linked disciplines, including complex algebraic geometry, complex analytic geometry of manifolds and spaces, and complex differential geometry.
The Third International Workshop on Complex Structures and Vector Fields was held to exchange information on current topics in complex analysis, differential geometry and mathematical physics, and to find new subjects in these fields.This volume contains many interesting and important articles in complex analysis (including quaternionic analysis), functional analysis, topology, differential geometry (hermitian geometry, surface theory), and mathematical physics (quantum mechanics, hamilton mechanics).
Selected Papers from the Seminar on Deformations, Lódz-Lublin, 1985/87
Includes twenty-six papers that survey a cross section of work in modern geometric measure theory and its applications in the calculus of variations. This title provides an access to the material, including introductions and summaries of many of the authors' much longer works and a section containing 80 open problems in the field.
The fifteen articles composing this volume focus on recent developments in complex analysis. Written by well-known researchers in complex analysis and related fields, they cover a wide spectrum of research using the methods of partial differential equations as well as differential and algebraic geometry. The topics include invariants of manifolds, the complex Neumann problem, complex dynamics, Ricci flows, the Abel-Radon transforms, the action of the Ricci curvature operator, locally symmetric manifolds, the maximum principle, very ampleness criterion, integrability of elliptic systems, and contact geometry. Among the contributions are survey articles, which are especially suitable for readers looking for a comprehensive, well-presented introduction to the most recent important developments in the field. The contributors are R. Bott, M. Christ, J. P. D'Angelo, P. Eyssidieux, C. Fefferman, J. E. Fornaess, H. Grauert, R. S. Hamilton, G. M. Henkin, N. Mok, A. M. Nadel, L. Nirenberg, N. Sibony, Y.-T. Siu, F. Treves, and S. M. Webster.
This volume contains the proceedings of the Fifth International Conference on Complex Analysis and Dynamical Systems, held from May 22-27, 2011, in Akko (Acre), Israel. The papers cover a wide variety of topics in complex analysis and partial differential