You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Soils have important roles to play in criminal and environmental forensic science. Since the initial concept of using soil in forensic investigations was mooted by Conan Doyle in his Sherlock Holmes stories prior to real-world applications, this branch of forensic science has become increasingly sophisticated and broad. New techniques in chemical, physical, biological, ecological and spatial analysis, coupled with informatics, are being applied to reducing areas of search by investigators, site identification, site comparison and measurement for the eventual use as evidence in court. Soils can provide intelligence, in assisting the determination of the provenance of samples from artifacts, v...
Forensic geoscience is an increasingly important sub-discipline within geoscience and forensic science. Although minerals, soils, dusts and rock fragments have been used as only begun to be recognized in the last ten years or so. The police and other investigative bodies are keen to encourage such developments in the fight against crime, particularly since many criminals show a high level of forensic awareness with regard to evidence such as fingerprints, blood and other body fluids. The papers in this volume illustrate some of the main principles, techniques and applications in current forensic geoscience, covering research and casework in the UK and internationally. The techniques described range from macro-scale field geophysical investigations to micro-scale laboratory studies of the chemical and textural properties of individual particles. In addition to forensic applications, many of these techniques have broad utility in geological, geomorphological, soil science and archaeological research.
Winner of the 2004 Claire P. Holdredge Award of the Association of Engineering Geologists (USA). The only book to concentrate on the relationship between geology and its implications for construction, this book covers the full scope of the subject from site investigation through to the complexities of reservoirs and dam sites. Features include international case studies throughout, and summaries of accepted practice, plus sections on waste disposal, and contaminated land.
This ground-breaking work is the first to cover the fundamentals of hydrogeophysics from both the hydrogeological and geophysical perspectives. Authored by leading experts and expert groups, the book starts out by explaining the fundamentals of hydrological characterization, with focus on hydrological data acquisition and measurement analysis as well as geostatistical approaches. The fundamentals of geophysical characterization are then at length, including the geophysical techniques that are often used for hydrogeological characterization. Unlike other books, the geophysical methods and petrophysical discussions presented here emphasize the theory, assumptions, approaches, and interpretations that are particularly important for hydrogeological applications. A series of hydrogeophysical case studies illustrate hydrogeophysical approaches for mapping hydrological units, estimation of hydrogeological parameters, and monitoring of hydrogeological processes. Finally, the book concludes with hydrogeophysical frontiers, i.e. on emerging technologies and stochastic hydrogeophysical inversion approaches.
An Introduction to Applied and Environmental Geophysics, 2nd Edition, describes the rapidly developing field of near-surface geophysics. The book covers a range of applications including mineral, hydrocarbon and groundwater exploration, and emphasises the use of geophysics in civil engineering and in environmental investigations. Following on from the international popularity of the first edition, this new, revised, and much expanded edition contains additional case histories, and descriptions of geophysical techniques not previously included in such textbooks. The level of mathematics and physics is deliberately kept to a minimum but is described qualitatively within the text. Relevant math...
None
Looking Into the Earth comprehensively describes the principles and applications of both 'global' and 'exploration' geophysics on all scales. It forms an introduction to geophysics suitable for those who do not necessarily intend to become professional geophysicists, including geologists, civil engineers, environmental scientists, and field archaeologists. The book is organised into two parts: Part 1 describes the geophysical methods, while Part 2 illustrates their use in a number of extended case histories. Mathematical and physical principles are introduced at an elementary level, and then developed as necessary. Student questions and exercises are included at the end of each chapter. The book is aimed primarily at introductory and intermediate university students taking courses in geology, earth science, environmental science, and engineering. It will also form an excellent introductory textbook in geophysics departments, and will help practising geologists, archaeologists and engineers understand what geophysics can offer their work.
The book introduces the basic foundations of high mathematics and vector algebra. Then, it explains the basic aspects of classical electrodynamics and electromagnetism. Based on such knowledge readers investigate various radio propagation problems related to guiding structures connecting electronic devices with antenna terminals placed at the different radar systems. It explains the role of antennas in process of transmission of radio signals between the terminals. Finally, it shows the relation between the main operational charactistics of each kind of radar and the corresponding knowledge obtained from the previous chapters.
Although there are now a large number of computer programmes for solving all sorts of foundation design problems, the need to check these outputs by 'hand-calculation' has become vitally important. This book concentrates on getting the fundamentals right and then using them in practical applications. The book is illustrated with numerous worked examples and with quick-reference tables and charts. In this new edition, the original highly acclaimed text has been extended and updated and now includes major new sections on short term and long term stability, critical state interpretation of peak strength, seismic methods for measuring ground stiffness in situ, and offshore pile design: total stress and effective stress approaches.A