Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Empirical Approach to Machine Learning
  • Language: en
  • Pages: 423

Empirical Approach to Machine Learning

  • Type: Book
  • -
  • Published: 2018-12-13
  • -
  • Publisher: Springer

This book provides a ‘one-stop source’ for all readers who are interested in a new, empirical approach to machine learning that, unlike traditional methods, successfully addresses the demands of today’s data-driven world. After an introduction to the fundamentals, the book discusses in depth anomaly detection, data partitioning and clustering, as well as classification and predictors. It describes classifiers of zero and first order, and the new, highly efficient and transparent deep rule-based classifiers, particularly highlighting their applications to image processing. Local optimality and stability conditions for the methods presented are formally derived and stated, while the soft...

Autonomous Learning Systems
  • Language: en
  • Pages: 259

Autonomous Learning Systems

Autonomous Learning Systems is the result of over a decade of focused research and studies in this emerging area which spans a number of well-known and well-established disciplines that include machine learning, system identification, data mining, fuzzy logic, neural networks, neuro-fuzzy systems, control theory and pattern recognition. The evolution of these systems has been both industry-driven with an increasing demand from sectors such as defence and security, aerospace and advanced process industries, bio-medicine and intelligent transportation, as well as research-driven – there is a strong trend of innovation of all of the above well-established research disciplines that is linked t...

Evolving Rule-Based Models
  • Language: en
  • Pages: 213

Evolving Rule-Based Models

  • Type: Book
  • -
  • Published: 2013-03-20
  • -
  • Publisher: Physica

The idea about this book has evolved during the process of its preparation as some of the results have been achieved in parallel with its writing. One reason for this is that in this area of research results are very quickly updated. Another is, possibly, that a strong, unchallenged theoretical basis in this field still does not fully exist. From other hand, the rate of innovation, competition and demand from different branches of industry (from biotech industry to civil and building engineering, from market forecasting to civil aviation, from robotics to emerging e-commerce) is increasingly pressing for more customised solutions based on learning consumers behaviour. A highly interdisciplin...

Empirical Approach to Machine Learning
  • Language: en
  • Pages: 437

Empirical Approach to Machine Learning

  • Type: Book
  • -
  • Published: 2018-10-17
  • -
  • Publisher: Springer

This book provides a ‘one-stop source’ for all readers who are interested in a new, empirical approach to machine learning that, unlike traditional methods, successfully addresses the demands of today’s data-driven world. After an introduction to the fundamentals, the book discusses in depth anomaly detection, data partitioning and clustering, as well as classification and predictors. It describes classifiers of zero and first order, and the new, highly efficient and transparent deep rule-based classifiers, particularly highlighting their applications to image processing. Local optimality and stability conditions for the methods presented are formally derived and stated, while the soft...

Evolving Intelligent Systems
  • Language: en
  • Pages: 464

Evolving Intelligent Systems

From theory to techniques, the first all-in-one resource for EIS There is a clear demand in advanced process industries, defense, and Internet and communication (VoIP) applications for intelligent yet adaptive/evolving systems. Evolving Intelligent Systems is the first self- contained volume that covers this newly established concept in its entirety, from a systematic methodology to case studies to industrial applications. Featuring chapters written by leading world experts, it addresses the progress, trends, and major achievements in this emerging research field, with a strong emphasis on the balance between novel theoretical results and solutions and practical real-life applications. Expla...

Sense and Avoid in UAS
  • Language: en
  • Pages: 381

Sense and Avoid in UAS

There is increasing interest in the potential of UAV (Unmanned Aerial Vehicle) and MAV (Micro Air Vehicle) technology and their wide ranging applications including defence missions, reconnaissance and surveillance, border patrol, disaster zone assessment and atmospheric research. High investment levels from the military sector globally is driving research and development and increasing the viability of autonomous platforms as replacements for the remotely piloted vehicles more commonly in use. UAV/UAS pose a number of new challenges, with the autonomy and in particular collision avoidance, detect and avoid, or sense and avoid, as the most challenging one, involving both regulatory and techni...

Evolving Rule-Based Models
  • Language: en
  • Pages: 236

Evolving Rule-Based Models

The idea about this book has evolved during the process of its preparation as some of the results have been achieved in parallel with its writing. One reason for this is that in this area of research results are very quickly updated. Another is, possibly, that a strong, unchallenged theoretical basis in this field still does not fully exist. From other hand, the rate of innovation, competition and demand from different branches of industry (from biotech industry to civil and building engineering, from market forecasting to civil aviation, from robotics to emerging e-commerce) is increasingly pressing for more customised solutions based on learning consumers behaviour. A highly interdisciplin...

Handbook On Computer Learning And Intelligence (In 2 Volumes)
  • Language: en
  • Pages: 1057

Handbook On Computer Learning And Intelligence (In 2 Volumes)

The Handbook on Computer Learning and Intelligence is a second edition which aims to be a one-stop-shop for the various aspects of the broad research area of computer learning and intelligence. This field of research evolved so much in the last five years that it necessitates this new edition of the earlier Handbook on Computational Intelligence.This two-volume handbook is divided into five parts. Volume 1 covers Explainable AI and Supervised Learning. Volume 2 covers three parts: Deep Learning, Intelligent Control, and Evolutionary Computation. The chapters detail the theory, methodology and applications of computer learning and intelligence, and are authored by some of the leading experts in the respective areas. The fifteen core chapters of the previous edition have been written and significantly refreshed by the same authors. Parts of the handbook have evolved to keep pace with the latest developments in computational intelligence in the areas that span across Machine Learning and Artificial Intelligence. The Handbook remains dedicated to applications and engineering-orientated aspects of these areas over abstract theories.Related Link(s)

Evolving Connectionist Systems
  • Language: en
  • Pages: 465

Evolving Connectionist Systems

This second edition of the must-read work in the field presents generic computational models and techniques that can be used for the development of evolving, adaptive modeling systems, as well as new trends including computational neuro-genetic modeling and quantum information processing related to evolving systems. New applications, such as autonomous robots, adaptive artificial life systems and adaptive decision support systems are also covered.

Emergent Behavior in Complex Systems Engineering
  • Language: en
  • Pages: 416

Emergent Behavior in Complex Systems Engineering

A comprehensive text that reviews the methods and technologies that explore emergent behavior in complex systems engineering in multidisciplinary fields In Emergent Behavior in Complex Systems Engineering, the authors present the theoretical considerations and the tools required to enable the study of emergent behaviors in manmade systems. Information Technology is key to today’s modern world. Scientific theories introduced in the last five decades can now be realized with the latest computational infrastructure. Modeling and simulation, along with Big Data technologies are at the forefront of such exploration and investigation. The text offers a number of simulation-based methods, technol...