You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Plasma Polymerization aims to bridge the conceptual gap between the academic and practical approaches to plasma polymerization and highlights the significance of plasma polymerization in materials science and technology. The major topics covered are gas-phase kinetics, ionization of gases, fundamentals of polymerization, mechanism of polymer formation in plasma, competitive aspects of polymer formation and ablation, mechanism of polymer deposition, operational factors of plasma polymerization, and electrical properties of plasma polymers. This book is comprised of 11 chapters and begins with a brief overview of plasma polymerization and its growing importance for the formation of entirely ne...
In current materials R&D, high priority is given to surface modification techniques to achieve improved surface properties for specific applications requirements. Plasma treatment and polymerization are important technologies for this purpose. This book provides a basic and thorough presentation of this subject. This is probably the first book
The aim of this book is to show how to make useful plasma polymerization processes resulting in polymeric (organic) materials - usually thin films of the desirable properties. The main emphasis is on the detailed discussion of the deposition apparatus, deposition parameters and properties of the obtained films. The historical background and the processes related to plasma polymerization are discussed. Fundamentals of plasma physics and plasma chemistry are concisely reviewed and used as a base for the explanation of plasma polymerization principles and its models. Special attention is devoted to the real plasma polymerization reactors and various polymer film deposition arrangements. Many te...
Plasma Deposition, Treatment, and Etching of Polymers takes a broad look at the basic principles, the chemical processes, and the diagnostic procedures in the interaction of plasmas with polymer surfaces. This recent technology has yielded a large class of new materials offering many applications, including their use as coatings for chemical fibers and films. Additional applications include uses for the passivation of metals, the surface hardening of tools, increased biocompatibility of biomedical materials, chemical and physical sensors, and a variety of micro- and optoelectronic devices. - Appeals to a broad range of industries from microelectronics to space technology - Discusses a wide array of new uses for plasma polymers - Provides a tutorial introduction to the field - Surveys various classes of plasma polymers, their chemical and morphological properties, effects of plasma process parameters on the growth and structure of these synthetic materials, and techniques for characterization - Interests scientists, engineers, and students alike
More than 99% of all visible matter in the universe occurs as highly ionized gas plasma with high energy content. Electrical low- and atmospheric-pressure plasmas are characterized by continuous source of moderate quantities of energy or enthalpy transferred predominantly as kinetic energy of electrons. Therefore, such energetically unbalanced plasmas have low gas temperature but produce sufficient energy for inelastic collisions with atoms and molecules in the gas phase, thus producing reactive species and photons, which are able to initiate all types of polymerizations or activate any surface of low reactive polymers. However, the broadly distributed energies in the plasma exceed partially...
In a systematic and comprehensive manner, this book describes the science of low-temperature plasma—a new field that is emerging at a fast pace. An expert well known in this field gives a coherent overview of the applications of low-temperature plasmas to chemical reactions, and in greater detail, to polymers formed or treated in plasma. After laying the groundwork with chapters on the nature of plasma and the variety of typical reactions that occur in discharges, the author deals with specific applications in the production of polymers. He then devotes a chapter each to the deposition of films, the nature of polymers produced in plasmas, and the specific properties of polymers, with a con...
Proceedings of the NATO Advanced Study Institute on Plasma Treatments and Deposition of Polymers, Acquafredda di Maratea, Italy, May 19-June 2, 1996
This book is a collection of invited papers (previously published in special issues of the Journal of Adhesion Science and Technology) written by internationally recognized researchers actively working in the field of plasma surface modification. It provides a current, comprehensive overview of the plasma treatment of polymers. In contrast to plasm