You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Topological, Projective & Combinatorial Properties Of Spaces
This book is the result of a 25-year-old project and comprises a collection of more than 500 attractive open problems in the field. The largely self-contained chapters provide a broad overview of discrete geometry, along with historical details and the most important partial results related to these problems. This book is intended as a source book for both professional mathematicians and graduate students who love beautiful mathematical questions, are willing to spend sleepless nights thinking about them, and who would like to get involved in mathematical research.
Discrete and computational geometry are two fields which in recent years have benefitted from the interaction between mathematics and computer science. The results are applicable in areas such as motion planning, robotics, scene analysis, and computer aided design. The book consists of twelve chapters summarizing the most recent results and methods in discrete and computational geometry. All authors are well-known experts in these fields. They give concise and self-contained surveys of the most efficient combinatorical, probabilistic and topological methods that can be used to design effective geometric algorithms for the applications mentioned above. Most of the methods and results discussed in the book have not appeared in any previously published monograph. In particular, this book contains the first systematic treatment of epsilon-nets, geometric tranversal theory, partitions of Euclidean spaces and a general method for the analysis of randomized geometric algorithms. Apart from mathematicians working in discrete and computational geometry this book will also be of great use to computer scientists and engineers, who would like to learn about the most recent results.
This monograph identifies polytopes that are ?combinatorially ?1-embeddable?, within interesting lists of polytopal graphs, i.e. such that corresponding polytopes are either prominent mathematically (regular partitions, root lattices, uniform polytopes and so on), or applicable in chemistry (fullerenes, polycycles, etc.). The embeddability, if any, provides applications to chemical graphs and, in the first case, it gives new combinatorial perspective to ??2-prominent? affine polytopal objects.The lists of polytopal graphs in the book come from broad areas of geometry, crystallography and graph theory. The book concentrates on such concise and, as much as possible, independent definitions. The scale-isometric embeddability ? the main unifying question, to which those lists are subjected ? is presented with the minimum of technicalities.
The publication of the first edition of Lagerungen in der Ebene, auf der Kugel und im Raum in 1953 marked the birth of discrete geometry. Since then, the book has had a profound and lasting influence on the development of the field. It included many open problems and conjectures, often accompanied by suggestions for their resolution. A good number of new results were surveyed by László Fejes Tóth in his Notes to the 2nd edition. The present version of Lagerungen makes this classic monograph available in English for the first time, with updated Notes, completed by extensive surveys of the state of the art. More precisely, this book consists of: a corrected English translation of the original Lagerungen, the revised and updated Notes on the original text, eight self-contained chapters surveying additional topics in detail. The English edition provides a comprehensive update to an enduring classic. Combining the lucid exposition of the original text with extensive new material, it will be a valuable resource for researchers in discrete geometry for decades to come.
This volume consists of the lecture notes of the Seminar on Mathematical Analysis which was held at the Universities of Malaga and Seville, Septembre 2002-February 2003.
The Moscow Mathematical Olympiad has been challenging high school students with stimulating, original problems of different degrees of difficulty for over 75 years. The problems are nonstandard; solving them takes wit, thinking outside the box, and, sometimes, hours of contemplation. Some are within the reach of most mathematically competent high school students, while others are difficult even for a mathematics professor. Many mathematically inclined students have found that tackling these problems, or even just reading their solutions, is a great way to develop mathematical insight. In 2006 the Moscow Center for Continuous Mathematical Education began publishing a collection of problems fr...