You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book provides a comprehensive and up-to-date description of the Josephson effect, a topic of never-ending interest in both fundamental and applied physics. In this volume, world-renowned experts present the unique aspects of the physics of the Josephson effect, resulting from the use of new materials, of hybrid architectures and from the possibility of realizing nanoscale junctions. These new experimental capabilities lead to systems where novel coherent phenomena and transport processes emerge. All this is of great relevance and impact, especially when combined with the didactic approach of the book. The reader will benefit from a general and modern view of coherent phenomena in weakly-coupled superconductors on a macroscopic scale. Topics that have been only recently discussed in specialized papers and in short reviews are described here for the first time and organized in a general framework. An important section of the book is also devoted to applications, with focus on long-term, future applications. In addition to a significant number of illustrations, the book includes numerous tables for comparative studies on technical aspects.
This volume is a collection of papers from the third meeting of the international symposium on mesoscopic superconductivity and spintronics. Research on quantum information technology has advanced a great deal since the previous meeting. Mesoscopic physics, such as spins in nano-scale semiconductor structures, micro-fabricated superconducting junctions and extraordinary metal contacts have now been not only theoretically but also experimentally established as important solid-state elements of quantum information devices. The book also contains some papers on information theory from the viewpoint of quantum algorithms, indicating that further collaboration between physics and computer science promises to produce fruitful results in quantum information technology.
Solid State Physics
Rarely do so many leading physicists attend one symposium. No less than nine Nobel laureates and some 40 other top researchers gathered for this symposium and this book contains the material presented in invited talks as well as the posters. The 34 papers are organised into three groups corresponding to various aspects of low dimensional physics of solids.
The process of realizing the ground state of some typical (frustrated) quantum many-body systems, starting from the ‘disordered’ or excited states, can be formally mapped to the search of solutions for computationally hard problems. The dynamics through the critical point, in between, are therefore extremely crucial. In the context of such computational optimization problems, the dynamics (of rapid quenching or slow annealing), while tuning the appropriate elds or uctuations, in particular while crossing the quantum critical point, are extremely intriguing and are being investigated these days intensively. Several successful methods and tricks are now well established. This volume gives ...
'Elements of Quantum Information' introduces the reader to the fascinating field of quantum information processing, which lives on the interface between computer science, physics, mathematics, and engineering. This interdisciplinary branch of science thrives on the use of quantum mechanics as a resource for high potential modern applications. With its wide coverage of experiments, applications, and specialized topics - all written by renowned experts - 'Elements of Quantum Information' provides an indispensable up-to-date account of the state of the art of this rapidly advancing field and takes the reader straight up to the frontiers of current research. The articles have first appeared as a special issue of the journal 'Fortschritte der Physik/Progress of Physics'. Since then, they have been carefully updated. The book will be an inspiring source of information and insight for anyone researching and specializing in experiments and theory of quantum information.
Covers receipts and expenditures of appropriations and other funds.