You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
About This Book This book is meant to be used by beginning graduate students. It covers basic material needed by any student of algebra, and is essential to those specializing in ring theory, homological algebra, representation theory and K-theory, among others. It will also be of interest to students of algebraic topology, functional analysis, differential geometry and number theory. Our approach is more homological than ring-theoretic, as this leads the to many important areas of mathematics. This ap student more quickly proach is also, we believe, cleaner and easier to understand. However, the more classical, ring-theoretic approach, as well as modern extensions, are also presented via several exercises and sections in Chapter Five. We have tried not to leave any gaps on the paths to proving the main theorem- at most we ask the reader to fill in details for some of the sideline results; indeed this can be a fruitful way of solidifying one's understanding.
The area of nonstrictly hyperbolic conservation laws is emerging as an important field, not only because it developed from applications of current interest, such as reservoir simulation, visco-elasticity, and multiphase flow, but also because the subject raises interesting mathematical questions of well-posedness, the structure of solutions, and admissibility criteria for weak solutions. The papers in this collection are based on talks presented at an AMS Special Session, held in Anaheim, California, in January 1985. Requiring some background in conservation laws, this collection will be of interest to research mathematicians working in the field of nonstrictly hyperbolic partial differential equations, as well as students who are learning the area and are looking for new applications and challenging problems in this field. The collection provides an overview of the field, examples of applications, descriptions of available techniques, and a bibliography of the literature.
A three-volume series of proceedings of the Solomon Lefschetz Centennial Conference, held in 1984 in Mexico City to celebrate Lefschetz's 100th birthday. The conference focused on three main areas of Lefschetz's research: algebraic geometry, algebraic topology, and differential geometry.
1989 marked the 150th anniversary of the birth of the great Danish mathematician Hieronymus George Zeuthen. Zeuthen's name is known to every algebraic geometer because of his discovery of a basic invariant of surfaces. However, he also did fundamental research in intersection theory, enumerative geometry, and the projective geometry of curves and surfaces. Zeuthen's extraordinary devotion to his subject, his characteristic depth, thoroughness, and clarity of thought, and his precise and succinct writing style are truly inspiring. During the past ten years or so, algebraic geometers have reexamined Zeuthen's work, drawing from it inspiration and new directions for development in the field. The 1989 Zeuthen Symposium, held in the summer of 1989 at the Mathematical Institute of the University of Copenhagen, provided a historic opportunity for mathematicians to gather and examine those areas in contemporary mathematical research which have evolved from Zeuthen's fruitful ideas. This volume, containing papers presented during the symposium, as well as others inspired by it, illuminates some currently active areas of research in enumerative algebraic geometry.
This book presents papers given at a Conference on Inverse Scattering on the Line, held in June 1990 at the University of Massachusetts, Amherst. A wide variety of topics in inverse problems were covered: inverse scattering problems on the line; inverse problems in higher dimensions; inverse conductivity problems; and numerical methods. In addition, problems from statistical physics were covered, including monodromy problems, quantum inverse scattering, and the Bethe ansatz. One of the aims of the conference was to bring together researchers in a variety of areas of inverse problems which have seen intensive activity in recent years. scattering
This volume contains the proceedings of a conference in honor of Goro Azumaya's seventieth birthday, held at Indiana University of Bloomington in May 1990. Professor Azumaya, who has been on the faculty of Indiana University since 1968, has made many important contributions to modern abstract algebra. His introduction and investigation of what have come to be known as Azumaya algebras subsequently stimulated much research on such rings and algebras, as well as applications to geometry and number theory. In addition to honoring Professor Azumaya's contributions, the conference was intended to stimulate interaction among three areas of his research interests; Azumaya algebras, group and Hopf algebra actions, and module theory. Aimed at researchers in algebra, this volume contains contributions by some of the leaders in these areas.
This 1985 AMS Summer Research Conference brought together mathematicians interested in multiparameter bifurcation with scientists working on fluid instabilities and chemical reactor dynamics. This proceedings volume demonstrates the mutually beneficial interactions between the mathematical analysis, based on genericity, and experimental studies in these fields. Various papers study steady state bifurcation, Hopf bifurcation to periodic solutions, interactions between modes, dynamic bifurcations, and the role of symmetries in such systems. A section of abstracts at the end of the volume provides guides and pointers to the literature. The mathematical study of multiparameter bifurcation leads to a number of theoretical and practical difficulties, many of which are discussed in these papers. The articles also describe theoretical and experimental studies of chemical reactors, which provide many situations in which to test the mathematical ideas. Other test areas are found in fluid dynamics, particularly in studying the routes to chaos in two laboratory systems, Taylor-Couette flow between rotating cylinders and Rayleigh-Benard convection in a fluid layer.
Requiring only some understanding of homological algebra and commutative ring theory, this book gives those who have encountered Grothendieck residues in geometry or complex analysis an understanding of residues, as well as an appreciation of Hochschild homology.
This volume collects together papers presented at the 1985 Conference in Function Estimation held at Humboldt State University. The papers focus especially on various types of spline estimations and convolution problems. The use of estimation and approximation methods as applied to geophysics, numerical analysis, and nonparametric statistics was a special feature of this conference.