You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book, a tribute to historian of mathematics Jeremy Gray, offers an overview of the history of mathematics and its inseparable connection to philosophy and other disciplines. Many different approaches to the study of the history of mathematics have been developed. Understanding this diversity is central to learning about these fields, but very few books deal with their richness and concrete suggestions for the “what, why and how” of these domains of inquiry. The editors and authors approach the basic question of what the history of mathematics is by means of concrete examples. For the “how” question, basic methodological issues are addressed, from the different perspectives of mathematicians and historians. Containing essays by leading scholars, this book provides a multitude of perspectives on mathematics, its role in culture and development, and connections with other sciences, making it an important resource for students and academics in the history and philosophy of mathematics.
Chapter 1 presents theorems on differentiable functions often used in differential topology, such as the implicit function theorem, Sard's theorem and Whitney's approximation theorem. The next chapter is an introduction to real and complex manifolds. It contains an exposition of the theorem of Frobenius, the lemmata of Poincaré and Grothendieck with applications of Grothendieck's lemma to complex analysis, the imbedding theorem of Whitney and Thom's transversality theorem. Chapter 3 includes characterizations of linear differentiable operators, due to Peetre and Hormander. The inequalities of Garding and of Friedrichs on elliptic operators are proved and are used to prove the regularity of weak solutions of elliptic equations. The chapter ends with the approximation theorem of Malgrange-Lax and its application to the proof of the Runge theorem on open Riemann surfaces due to Behnke and Stein.
A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 2A is devoted to basic complex analysis. It interweaves three analytic threads associated with Cauchy, Riemann, and Weierstrass, respectively. Cauchy's view focuses on the differential and integral calculus of functions of a complex variable, with the key topics being t...
Uniquely, this book proposes robust space-time code designs for real-world wireless channels. Through a unified framework, it emphasizes how propagation mechanisms such as space-time frequency correlations and coherent components impact the MIMO system performance under realistic power constraints. Combining a solid mathematical analysis with a physical and intuitive approach to space-time coding, the book progressively derives innovative designs, taking into consideration that MIMO channels are often far from ideal.The various chapters of this book provide an essential, complete and refreshing insight into the performance behaviour of space-time codes in realistic scenarios and constitute a...
... Je mehr ich tiber die Principien der Functionentheorie nachdenke - und ich thue dies unablassig -, urn so fester wird meine Uberzeugung, dass diese auf dem Fundamente algebraischer Wahrheiten aufgebaut werden muss (WEIERSTRASS, Glaubensbekenntnis 1875, Math. Werke II, p. 235). 1. Sheaf Theory is a general tool for handling questions which involve local solutions and global patching. "La notion de faisceau s'introduit parce qu'il s'agit de passer de donnees 'locales' a l'etude de proprietes 'globales'" [CAR], p. 622. The methods of sheaf theory are algebraic. The notion of a sheaf was first introduced in 1946 by J. LERAY in a short note Eanneau d'homologie d'une representation, C.R. Acad....
This book presents an elementary and self-contained approach to Abelian varieties, a subject that plays a central role in algebraic and analytic geometry, number theory, and complex analysis. The book is based on notes from a course given at Concordia University and would be useful for independent study or as a textbook for graduate courses in complex analysis, Riemann surfaces, number theory, or analytic geometry. Murty works mostly over the complex numbers, discussing the theorem of Abel-Jacobi and Lefschetz's theorem on projective embeddings. After presenting some examples, Murty touches on Abelian varieties over number fields, as well as the conjecture of Tate (Faltings's theorem) and its relation to Mordell's conjecture. References are provided to guide the reader in further study.
Operations Research is a field whose major contribution has been to propose a rigorous fonnulation of often ill-defmed problems pertaining to the organization or the design of large scale systems, such as resource allocation problems, scheduling and the like. While this effort did help a lot in understanding the nature of these problems, the mathematical models have proved only partially satisfactory due to the difficulty in gathering precise data, and in formulating objective functions that reflect the multi-faceted notion of optimal solution according to human experts. In this respect linear programming is a typical example of impressive achievement of Operations Research, that in its dete...
ICTAEM_1 treated all aspects of theoretical, applied and experimental mechanics including biomechanics, composite materials, computational mechanics, constitutive modeling of materials, dynamics, elasticity, experimental mechanics, fracture, mechanical properties of materials, micromechanics, nanomechanics, plasticity, stress analysis, structures, wave propagation. During the conference special symposia covering major areas of research activity organized by members of the Scientific Advisory Board took place. ICTAEM_1 brought together the most outstanding world leaders and gave attendees the opportunity to get acquainted with the latest developments in the area of mechanics. ICTAEM_1 is a forum of university, industry and government interaction and serves in the exchange of ideas in an area of utmost scientific and technological importance.
This book explores the work of Bernhard Riemann and its impact on mathematics, philosophy and physics. It features contributions from a range of fields, historical expositions, and selected research articles that were motivated by Riemann’s ideas and demonstrate their timelessness. The editors are convinced of the tremendous value of going into Riemann’s work in depth, investigating his original ideas, integrating them into a broader perspective, and establishing ties with modern science and philosophy. Accordingly, the contributors to this volume are mathematicians, physicists, philosophers and historians of science. The book offers a unique resource for students and researchers in the fields of mathematics, physics and philosophy, historians of science, and more generally to a wide range of readers interested in the history of ideas.
This book examines key issues, challenges, opportunities and trends in innovation processes and supply chain management. It proposes ways for organizations to improve their performance by developing business strategies, establishing business innovation activities, and aligning business and innovation activities among firms. Further, it showcases and analyzes the implementation of inter- and intra-organizational process improvement activities and the implementation of organizational innovation solutions to address new product and process-related collaborative relationships across the supply chain. The book is useful for researchers, academics and professionals, presenting some of the most advanced research, concepts, and case studies on the relationship between innovation and supply chain.