You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Six leading experts lecture on a wide spectrum of recent results on the subject of the title. They present a survey of various interactions between representation theory and harmonic analysis on semisimple groups and symmetric spaces, and recall the concept of amenability. They further illustrate how representation theory is related to quantum computing; and much more. Taken together, this volume provides both a solid reference and deep insights on current research activity.
This book collects approximately nine hundred problems that have appeared on the preliminary exams in Berkeley over the last twenty years. It is an invaluable source of problems and solutions. Readers who work through this book will develop problem solving skills in such areas as real analysis, multivariable calculus, differential equations, metric spaces, complex analysis, algebra, and linear algebra.
Lectures: A. Auslander, R. Tolimeri: Nilpotent groups and abelian varieties.- M Cowling: Unitary and uniformly bounded representations of some simple Lie groups.- M. Duflo: Construction de representations unitaires d’un groupe de Lie.- R. Howe: On a notion of rank for unitary representations of the classical groups.- V.S. Varadarajan: Eigenfunction expansions of semisimple Lie groups.- R. Zimmer: Ergodic theory, group representations and rigidity.- Seminars: A. Koranyi: Some applications of Gelfand pairs in classical analysis.
None
The book contains survey and research articles devoted mainly to geometry and harmonic analysis of symmetric spaces and to corresponding aspects of group representation theory. The volume is dedicated to the memory of Russian mathematician, F. I. Karpelevich (1927-2000). Of particular interest are the survey articles by Sawyer on the Abel transform on noncompact Riemannian symmetric spaces, and by Anker and Ostellari on estimates for heat kernels on such spaces, as well as thearticle by Bernstein and Gindikin on integral geometry for families of curves. There are also many research papers on topics of current interest. The book is suitable for graduate students and research mathematicians interested in harmonic analysis and representation theory.
Princeton University's Elias Stein was the first mathematician to see the profound interconnections that tie classical Fourier analysis to several complex variables and representation theory. His fundamental contributions include the Kunze-Stein phenomenon, the construction of new representations, the Stein interpolation theorem, the idea of a restriction theorem for the Fourier transform, and the theory of Hp Spaces in several variables. Through his great discoveries, through books that have set the highest standard for mathematical exposition, and through his influence on his many collaborators and students, Stein has changed mathematics. Drawing inspiration from Stein’s contributions to...
On May 20-24. 1968, a Conference on Functional Analysis and Related Fields was held at the Center for Continuing Education of the University cl Chicago in honor of ProfessoLMARSHALL HARVEY STONE on the occasion of his retirement from active service at the University. The Conference received support from the Air Force Office of Scientific Research under the Grant AFOSR 68-1497. The Organizing committee for this Conference consisted of ALBERTO P. CALDERON, SAUNDERS MACLANE, ROBERT G. POHRER, and FELIX E. BROWDER (Chairman). The present volume contains some of the papers presented at the Conference. nther talks which were presented at the Conference for which papers are noLinduded hereare: K. C...
This volume presents the proceedings of a conference on Harmonic Analysis and Number Theory held at McGill University (Montreal) in April 1996. The papers are dedicated to the memory of Carl Herz, who had deep interests in both harmonic analysis and number theory. These two disciplines have a symbiotic relationship that is reflected in the papers in this book.
Harish-Chandra was a mathematician of great power, vision, and remarkable ingenuity. His profound contributions to the representation theory of Lie groups, harmonic analysis, and related areas left researchers a rich legacy that continues today. This book presents the proceedings of an AMS Special Session entitled, "Representation Theory and Noncommutative Harmonic Analysis: A Special Session Honoring the Memory of Harish-Chandra", which marked 75 years since his birth and 15 years since his untimely death at age 60. Contributions to the volume were written by an outstanding group of internationally known mathematicians. Included are expository and historical surveys and original research pa...