You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Considers the politics of low-level and intermediate-level radioactive waste disposal (high-level waste is another kettle of [toxic] fish altogether, just now beginning to enter the political arena) from a comparative international perspective in order to discover what factors impinge upon the overriding need for legitimate and publicly acceptable solutions. Distributed by St. Martin's Press. Annotation copyright by Book News, Inc., Portland, OR
The perception of radioactive waste as a major problem for the industrial world has developed only recently. Four decades ago the disposal of such waste was regarded as a relatively minor matter. Those were the heady days when nuclear fission seemed the answer to the world's energy needs: the two wartime bombs had demonstrated its awesome power, and now it was to be harnessed for the production of electricity, the excavation of canals, even the running of cars and airplanes. In all applications of fission some waste containing radioactive elements would be generated of course, but it seemed only a trivial annoyance, a problem whose solution could be deferred until the more exciting challenge...
The book assesses current ideas for long-term disposal of highly radioactive waste. Different types of rock are discussed and assessed with respect to practical difficulties in constructing a repository, and the efficiency of isolating radioactive waste.
Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste, Second Edition, critically reviews state-of-the-art technologies and scientific methods relating to the implementation of the most effective approaches to the long-term, safe disposition of nuclear waste, also discussing regulatory developments and social engagement approaches as major themes. Chapters in Part One introduce the topic of geological disposal, providing an overview of near-surface, intermediate depth, and deep borehole disposal, spanning low-, medium- and high-level wastes. Part Two addresses the different types of repository systems – crystalline, clay, and salt, also discussing met...
Many countries are currently exploring the option to dispose of highly radioactive solid wastes deep underground in purpose built, engineered repositories. A number of surface and shallow repositories for less radioactive wastes are already in operation. One of the challenges facing the nuclear industry is to demonstrate confidently that a repository will contain wastes for so long that any releases that might take place in the future will pose no significant health or environmental risk. One method for building confidence in the long-term future safety of a repository is to look at the physical and chemical processes which operate in natural and archaeological systems, and to draw appropriate parallels with the repository. For example, to understand why some uranium orebodies have remained isolated underground for billions of years. Such studies are called 'natural analogues'. This book investigates the concept of geological disposal and examines the wide range of natural analogues which have been studied. Lessons learnt from studies of archaeological and natural systems can be used to improve our capabilities for assessing the future safety of a radioactive waste repository.
Radioactive waste management and contaminated site clean-up reviews radioactive waste management processes, technologies, and international experiences. Part one explores the fundamentals of radioactive waste including sources, characterisation, and processing strategies. International safety standards, risk assessment of radioactive wastes and remediation of contaminated sites and irradiated nuclear fuel management are also reviewed. Part two highlights the current international situation across Africa, Asia, Europe, and North America. The experience in Japan, with a specific chapter on Fukushima, is also covered. Finally, part three explores the clean-up of sites contaminated by weapons pr...
There is an extremely voluminous literature on radioactive waste and its disposal, much in the form of government-sponsored research reports. To wade through this mountain of literature is indeed a tedious task, and it is safe to speculate that very few, if any, individuals have the time to examine each report that has been issued during the preceding ten years. This book attempts to summarize much of this literature. Further, many workers in the geosciences have not received training in the nuclear sciences, and many nuclear scientists could be better versed in geology. In this book an attempt is made to cover some background material on radioactive wastes and geotoxicity that may not be an...
This Safety Guide provides recommendations on how to meet safety requirements on the disposal of radioactive waste. It is concerned with the disposal of solid radioactive waste by emplacement in designated facilities at or near the land surface. The Safety Guide provides guidance on the development, operation and closure of, and on the regulatory control of, near surface disposal facilities, which are suitable for the disposal of very low level waste and low level waste. The Safety Guide provides guidance on a range of disposal methods, including the emplacement of solid radioactive waste in earthen trenches, in above ground engineered structures, in engineered structures just below the ground surface and in rock caverns, silos and tunnels excavated at depths of up to a few tens of metres underground. It is intended for use primarily by those involved with policy development for, with the regulatory control of, and with the development and operation of near surface disposal facilities.
This report, which has been prepared as part of the IAEA programme on radioactive waste disposal, discusses the approaches used in the hydrogeological investigation of repository sites. It is based on experience gained in Member States on those rock types considered as having the potential to host a repository.
As the re-emergence of nuclear power as an acceptable energy source on an international basis continues, the need for safe and reliable ways to dispose of radioactive waste becomes ever more critical. The ultimate goal for designing a predisposal waste-management system depends on producing waste containers suitable for storage, transportation and permanent disposal. Cement-Based Materials for Nuclear-Waste Storage provides a roadmap for the use of cementation as an applied technique for the treatment of low- and intermediate-level radioactive wastes. Coverage includes, but is not limited to, a comparison of cementation with other solidification techniques, advantages of calcium-silicate cements over other materials and a discussion of the long-term suitability and safety of waste packages as well as cement barriers.