You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book closes the gap between standard undergraduate texts on fluid mechanics and monographical publications devoted to specific aspects of viscous fluid flows. Each chapter serves as an introduction to a special topic that will facilitate later application by readers in their research work.
This research monograph deals with a modeling theory of the system of Navier-Stokes-Fourier equations for a Newtonian fluid governing a compressible viscous and heat conducting flows. The main objective is threefold. First , to 'deconstruct' this Navier-Stokes-Fourier system in order to unify the puzzle of the various partial simplified approximate models used in Newtonian Classical Fluid Dynamics and this, first facet, have obviously a challenging approach and a very important pedagogic impact on the university education. The second facet of the main objective is to outline a rational consistent asymptotic/mathematical theory of the of fluid flows modeling on the basis of a typical Navier-Stokes-Fourier initial and boundary value problem. The third facet is devoted to an illustration of our rational asymptotic/mathematical modeling theory for various technological and geophysical stiff problems from: aerodynamics, thermal and thermocapillary convections and also meteofluid dynamics.
The author considers meteorology as a part of fluid dynamics. He tries to derive the properties of atmospheric flows from a rational analysis of the Navier-Stokes equations, at the same time analyzing various types of initial and boundary problems. This approach to simulate nature by models from fluid dynamics will be of interest to both scientists and students of physics and theoretical meteorology.
for the fluctuations around the means but rather fluctuations, and appearing in the following incompressible system of equations: on any wall; at initial time, and are assumed known. This contribution arose from discussion with J. P. Guiraud on attempts to push forward our last co-signed paper (1986) and the main idea is to put a stochastic structure on fluctuations and to identify the large eddies with a part of the probability space. The Reynolds stresses are derived from a kind of Monte-Carlo process on equations for fluctuations. Those are themselves modelled against a technique, using the Guiraud and Zeytounian (1986). The scheme consists in a set of like equations, considered as random...
From the reviews: "Researchers in fluid dynamics and applied mathematics will enjoy this book for its breadth of coverage, hands-on treatment of important ideas, many references, and historical and philosophical remarks." Mathematical Reviews
Rationality - as opposed to 'ad-hoc' - and asymptotics - to emphasize the fact that perturbative methods are at the core of the theory - are the two main concepts associated with the Rational Asymptotic Modeling (RAM) approach in fluid dynamics when the goal is to specifically provide useful models accessible to numerical simulation via high-speed computing. This approach has contributed to a fresh understanding of Newtonian fluid flow problems and has opened up new avenues for tackling real fluid flow phenomena, which are known to lead to very difficult mathematical and numerical problems irrespective of turbulence. With the present scientific autobiography the author guides the reader through his somewhat non-traditional career; first discovering fluid mechanics, and then devoting more than fifty years to intense work in the field. Using both personal and general historical contexts, this account will be of benefit to anyone interested in the early and contemporary developments of an important branch of theoretical and computational fluid mechanics.
Marangoni (1878), provided a wealth of detailed information on the effects of variations of the potential energy of liquid surfaces and, in particular, flow arising from variations in temperature and surfactant composition. One aspect of this science is seen today to bear on important phenomena associated with the processing of modern materials. The role of the basic effect in technology was probably first demonstrated by chemical engineers in the field of liquid-liquid extraction. Indeed, phenomena attributable to Marangoni flows have been reported in innumerable instances relevant to modern technologies, such as in hot salt corrosion in aeroturbine blades; the drying of solvent-containing paints; the drying of silicon wafers used in electronics; in materials processing, particularly in metallic systems which have been suspected to demonstrate Marangoni flows.
The present work is not exactly a "course", but rather is presented as a monograph in which the author has set forth what are, for the most part, his own results; this is particularly true of Chaps. 7-13. Many of the problems dealt with herein have, since the school year 1975-76, been the subject of a series of graduate lectures at the "Universire des Sciences et Techniques de Lille I" for students preparing for the "Diplome d'Etudes Ap profondies de Mecanique (option fluides)". The writing of this book was thus strongly influenced by the author's own conception of meteorology as a fluid mechanics discipline which is in a privi leged area for the application of singular perturbation techniqu...
This monograph presents a synopsis of fluid dynamics based on the personal scientific experience of the author who has contributed immensely to the field. The interested reader will also benefit from the general historical context in which the material is presented in the book. The book covers a wide range of relevant topics of the field, and the main tool being rational asymptotic modelling (RAM) approach. The target audience primarily comprises experts in the field of fluid dynamics, but the book may also be beneficial for graduate students.
Accuracy in the laboratory setting is key to maintaining the integrity of scientific research. Inaccurate measurements create false and non-reproducible results, rendering an experiment or series of experiments invalid and wasting both time and money. This handy guide to solid, fluid, and thermal measurement helps minimize this pitfall through careful detailing of measurement techniques. Concise yet thorough, Mechanical Variables Measurement-Solid, Fluid, and Thermal describes the use of instruments and methods for practical measurements required in engineering, physics, chemistry, and the life sciences. Organized according to measurement problem, the entries are easy to access. The articles...