You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
An in-depth coverage of selected areas of graph theory focusing on symmetry properties of graphs, ideal for beginners and specialists.
There is convergent consensus among scientists that many social, economic and ?nancial phenomena can be described by a network of agents and their inter- tions. Surprisingly, even though the application ?elds are quite different, those n- works often show a common behaviour. Thus, their topological properties can give useful insights on how the network is structured, which are the most “important” nodes/agents, how the network reacts to new arrivals. Moreover the network, once included into a dynamic context, helps to model many phenomena. Among the t- ics in which topology and dynamics are the essential tools, we will focus on the diffusion of technologies and fads, the rise of industri...
A two-volume advanced text for graduate students. This first volume covers the theory of Fourier analysis.
Detailed account of analysis on Polish spaces with a straightforward introduction to optimal transportation.
A straightforward introduction to Clifford algebras, providing the necessary background material and many applications in mathematics and physics.
The last decade has seen two parallel developments, one in computer science, the other in mathematics, both dealing with the same kind of combinatorial structures: networks with strong symmetry properties or, in graph-theoretical language, vertex-transitive graphs, in particular their prototypical examples, Cayley graphs. In the design of large interconnection networks it was realised that many of the most fre quently used models for such networks are Cayley graphs of various well-known groups. This has spawned a considerable amount of activity in the study of the combinatorial properties of such graphs. A number of symposia and congresses (such as the bi-annual IWIN, starting in 1991) bear witness to the interest of the computer science community in this subject. On the mathematical side, and independently of any interest in applications, progress in group theory has made it possible to make a realistic attempt at a complete description of vertex-transitive graphs. The classification of the finite simple groups has played an important role in this respect.
Classical number theory is developed from scratch leading to geometric discrepancy theory, with Fourier analysis introduced along the way.
What is the "archetypal" image that comes to mind when one thinks of an infinite graph? What with a finite graph - when it is thought of as opposed to an infinite one? What structural elements are typical for either - by their presence or absence - yet provide a common ground for both? In planning the workshop on "Cycles and Rays" it had been intended from the outset to bring infinite graphs to the fore as much as possible. There never had been a graph theoretical meeting in which infinite graphs were more than "also rans", let alone one in which they were a central theme. In part, this is a matter of fashion, inasmuch as they are perceived as not readily lending themselves to applications, ...
A gentle introduction to Liouville's powerful method in elementary number theory. Suitable for advanced undergraduate and beginning graduate students.
This is a comprehensive introduction to the modular representation theory of finite groups, with an emphasis on block theory. The two volumes take into account classical results and concepts as well as some of the modern developments in the area. Volume 1 introduces the broader context, starting with general properties of finite group algebras over commutative rings, moving on to some basics in character theory and the structure theory of algebras over complete discrete valuation rings. In Volume 2, blocks of finite group algebras over complete p-local rings take centre stage, and many key results which have not appeared in a book before are treated in detail. In order to illustrate the wide range of techniques in block theory, the book concludes with chapters classifying the source algebras of blocks with cyclic and Klein four defect groups, and relating these classifications to the open conjectures that drive block theory.