You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This textbook, based on lectures given over a period of years at Cambridge, is a detailed and thorough introduction to Galois theory.
This book contains a wealth of inequalities used in linear analysis, and explains in detail how they are used. The book begins with Cauchy's inequality and ends with Grothendieck's inequality, in between one finds the Loomis-Whitney inequality, maximal inequalities, inequalities of Hardy and of Hilbert, hypercontractive and logarithmic Sobolev inequalities, Beckner's inequality, and many, many more. The inequalities are used to obtain properties of function spaces, linear operators between them, and of special classes of operators such as absolutely summing operators. This textbook complements and fills out standard treatments, providing many diverse applications: for example, the Lebesgue decomposition theorem and the Lebesgue density theorem, the Hilbert transform and other singular integral operators, the martingale convergence theorem, eigenvalue distributions, Lidskii's trace formula, Mercer's theorem and Littlewood's 4/3 theorem. It will broaden the knowledge of postgraduate and research students, and should also appeal to their teachers, and all who work in linear analysis.
This book provides a comprehensive introduction to modern global variational theory on fibred spaces. It is based on differentiation and integration theory of differential forms on smooth manifolds, and on the concepts of global analysis and geometry such as jet prolongations of manifolds, mappings, and Lie groups. The book will be invaluable for researchers and PhD students in differential geometry, global analysis, differential equations on manifolds, and mathematical physics, and for the readers who wish to undertake further rigorous study in this broad interdisciplinary field. Featured topics- Analysis on manifolds- Differential forms on jet spaces - Global variational functionals- Euler...
The three volumes of A Course in Mathematical Analysis provide a full and detailed account of all those elements of real and complex analysis that an undergraduate mathematics student can expect to encounter in their first two or three years of study. Containing hundreds of exercises, examples and applications, these books will become an invaluable resource for both students and teachers. Volume 1 focuses on the analysis of real-valued functions of a real variable. This second volume goes on to consider metric and topological spaces. Topics such as completeness, compactness and connectedness are developed, with emphasis on their applications to analysis. This leads to the theory of functions of several variables. Differential manifolds in Euclidean space are introduced in a final chapter, which includes an account of Lagrange multipliers and a detailed proof of the divergence theorem. Volume 3 covers complex analysis and the theory of measure and integration.
An introductory treatment to the homotopy theory of homotopical categories, presenting several models and comparisons between them.
For those who wonder if the forcing theory is beyond their means: no. Directions to research in forcing are given.
Provides a graduate-level introduction to the theory of semigroups of operators.
A concise introduction to the most important parts of differential and low-dimensional topology for incoming graduate students.
Detailed account of analysis on Polish spaces with a straightforward introduction to optimal transportation.
Summability is an extremely fruitful area for the application of functional analysis; this volume could be used as a source for such applications. Those parts of summability which only have ``hard'' (classical) proofs are omitted; the theorems given all have ``soft'' (functional analytic) proofs.