Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Differential Evolution
  • Language: en
  • Pages: 544

Differential Evolution

Problems demanding globally optimal solutions are ubiquitous, yet many are intractable when they involve constrained functions having many local optima and interacting, mixed-type variables. The differential evolution (DE) algorithm is a practical approach to global numerical optimization which is easy to understand, simple to implement, reliable, and fast. Packed with illustrations, computer code, new insights, and practical advice, this volume explores DE in both principle and practice. It is a valuable resource for professionals needing a proven optimizer and for students wanting an evolutionary perspective on global numerical optimization.

Differential Evolution
  • Language: en
  • Pages: 201

Differential Evolution

Individuals and enterprises are looking for optimal solutions for the problems they face. Most problems can be expressed in mathematical terms, and so the methods of optimization render a significant aid. This book details the latest achievements in optimization. It offers comprehensive coverage on Differential Evolution, presenting revolutionary ideas in population-based optimization and shows the best known metaheuristics through the prism of Differential Evolution.

Artificial Neural Networks - ICANN 2008
  • Language: en
  • Pages: 1053

Artificial Neural Networks - ICANN 2008

This two volume set LNCS 5163 and LNCS 5164 constitutes the refereed proceedings of the 18th International Conference on Artificial Neural Networks, ICANN 2008, held in Prague Czech Republic, in September 2008. The 200 revised full papers presented were carefully reviewed and selected from more than 300 submissions. The first volume contains papers on mathematical theory of neurocomputing, learning algorithms, kernel methods, statistical learning and ensemble techniques, support vector machines, reinforcement learning, evolutionary computing, hybrid systems, self-organization, control and robotics, signal and time series processing and image processing.

Evolutionary Approach to Machine Learning and Deep Neural Networks
  • Language: en
  • Pages: 254

Evolutionary Approach to Machine Learning and Deep Neural Networks

  • Type: Book
  • -
  • Published: 2018-06-15
  • -
  • Publisher: Springer

This book provides theoretical and practical knowledge about a methodology for evolutionary algorithm-based search strategy with the integration of several machine learning and deep learning techniques. These include convolutional neural networks, Gröbner bases, relevance vector machines, transfer learning, bagging and boosting methods, clustering techniques (affinity propagation), and belief networks, among others. The development of such tools contributes to better optimizing methodologies. Beginning with the essentials of evolutionary algorithms and covering interdisciplinary research topics, the contents of this book are valuable for different classes of readers: novice, intermediate, a...

Algorithms for Variable-Size Optimization
  • Language: en
  • Pages: 230

Algorithms for Variable-Size Optimization

  • Type: Book
  • -
  • Published: 2021-04-04
  • -
  • Publisher: CRC Press

Many systems architecture optimization problems are characterized by a variable number of optimization variables. Many classical optimization algorithms are not suitable for such problems. The book presents recently developed optimization concepts that are designed to solve such problems. These new concepts are implemented using genetic algorithms and differential evolution. The examples and applications presented show the effectiveness of the use of these new algorithms in optimizing systems architectures. The book focuses on systems architecture optimization. It covers new algorithms and its applications, besides reviewing fundamental mathematical concepts and classical optimization method...

Numerical Methods and Optimization in Finance
  • Language: en
  • Pages: 638

Numerical Methods and Optimization in Finance

Computationally-intensive tools play an increasingly important role in financial decisions. Many financial problems-ranging from asset allocation to risk management and from option pricing to model calibration-can be efficiently handled using modern computational techniques. Numerical Methods and Optimization in Finance presents such computational techniques, with an emphasis on simulation and optimization, particularly so-called heuristics. This book treats quantitative analysis as an essentially computational discipline in which applications are put into software form and tested empirically. This revised edition includes two new chapters, a self-contained tutorial on implementing and using heuristics, and an explanation of software used for testing portfolio-selection models. Postgraduate students, researchers in programs on quantitative and computational finance, and practitioners in banks and other financial companies can benefit from this second edition of Numerical Methods and Optimization in Finance.

Advanced Statistical Methods for the Analysis of Large Data-Sets
  • Language: en
  • Pages: 464

Advanced Statistical Methods for the Analysis of Large Data-Sets

The theme of the meeting was “Statistical Methods for the Analysis of Large Data-Sets”. In recent years there has been increasing interest in this subject; in fact a huge quantity of information is often available but standard statistical techniques are usually not well suited to managing this kind of data. The conference serves as an important meeting point for European researchers working on this topic and a number of European statistical societies participated in the organization of the event. The book includes 45 papers from a selection of the 156 papers accepted for presentation and discussed at the conference on “Advanced Statistical Methods for the Analysis of Large Data-sets.”

Nature Inspired Cooperative Strategies for Optimization (NICSO 2007)
  • Language: en
  • Pages: 520

Nature Inspired Cooperative Strategies for Optimization (NICSO 2007)

Biological and natural processes have been a continuous source of inspiration for the sciences and engineering. For instance, the work of Wiener in cybernetics was influenced by feedback control processes observable in biological systems; McCulloch and Pitts description of the artificial neuron was instigated by biological observations of neural mechanisms; the idea of survival of the fittest inspired the field of evolutionary algorithms and similarly, artificial immune systems, ant colony optimisation, automated self-assembling programming, membrane computing, etc. also have their roots in natural phenomena. The second International Workshop on Nature Inspired Cooperative Strategies for Opt...

Data-Driven Evolutionary Modeling in Materials Technology
  • Language: en
  • Pages: 319

Data-Driven Evolutionary Modeling in Materials Technology

  • Type: Book
  • -
  • Published: 2022-09-15
  • -
  • Publisher: CRC Press

Due to efficacy and optimization potential of genetic and evolutionary algorithms, they are used in learning and modeling especially with the advent of big data related problems. This book presents the algorithms and strategies specifically associated with pertinent issues in materials science domain. It discusses the procedures for evolutionary multi-objective optimization of objective functions created through these procedures and introduces available codes. Recent applications ranging from primary metal production to materials design are covered. It also describes hybrid modeling strategy, and other common modeling and simulation strategies like molecular dynamics, cellular automata etc. ...

Optimization of Sustainable Enzymes Production
  • Language: en
  • Pages: 239

Optimization of Sustainable Enzymes Production

  • Type: Book
  • -
  • Published: 2022-11-29
  • -
  • Publisher: CRC Press

This book is designed as a reference book and presents a systematic approach to analyze evolutionary and nature-inspired population-based search algorithms. Beginning with an introduction to optimization methods and algorithms and various enzymes, the book then moves on to provide a unified framework of process optimization for enzymes with various algorithms. The book presents current research on various applications of machine learning and discusses optimization techniques to solve real-life problems. The book compiles the different machine learning models for optimization of process parameters for production of industrially important enzymes. The production and optimization of various enz...