You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents the latest findings and ongoing research in connection with green information systems and green information & communication technology (ICT). It provides valuable insights into a broad range of cross-cutting concerns in ICT and the environmental sciences, and showcases how ICT can be used to effectively address environmental and energy efficiency issues. Offering a selection of extended contributions to the 31st International Conference EnviroInfo 2017, it is essential reading for anyone looking to expand their expertise in the area.
Advanced information technology infrastructure is increasingly being employed in the Earth sciences to provide researchers with efficient access to massive central databases and to integrate diversely formatted information from a variety of sources. These geoinformatics initiatives enable manipulation, modeling and visualization of data in a consistent way, and are helping to develop integrated Earth models at various scales, and from the near surface to the deep interior. This book uses a series of case studies to demonstrate computer and database use across the geosciences. Chapters are thematically grouped into sections that cover data collection and management; modeling and community computational codes; visualization and data representation; knowledge management and data integration; and web services and scientific workflows. Geoinformatics is a fascinating and accessible introduction to this emerging field for readers across the solid Earth sciences and an invaluable reference for researchers interested in initiating new cyberinfrastructure projects of their own.
Computer science provides a powerful tool that was virtually unknown three generations ago. Some of the classical fields of knowledge are geodesy (surveying), cartography, and geography. Electronics have revolutionized geodetic methods. Cartography has faced the dominance of the computer that results in simplified cartographic products. All three fields make use of basic components such as the Internet and databases. The Springer Handbook of Geographic Information is organized in three parts, Basics, Geographic Information and Applications. Some parts of the basics belong to the larger field of computer science. However, the reader gets a comprehensive view on geographic information because the topics selected from computer science have a close relation to geographic information. The Springer Handbook of Geographic Information is written for scientists at universities and industry as well as advanced and PhD students.
GIS users and professionals are aware that the accuracy of GIS results cannot be naively based on the quality of the graphical output. Data stored in a GIS will have been collected or measured, classified, generalised, interpreted or estimated, and in all cases this allows the introduction of errors.; With the processing of translation of this data
This book contains the full research papers presented at the 20th AGILE Conference on Geographic Information Science, held in 2017 at Wageningen University & Research in Wageningen, the Netherlands. The selected contributions show trends in the domain of geographic information science directed to spatio-temporal perception and spatio-temporal analysis. For that reason the book is also of interest to professionals and researchers in fields outside geographic information science, in which the application of geoinformation could be instrumental in sparking societal innovation.
This book constitutes the refereed proceedings of the 4th International Conference on Geographic Information Science, GIScience 2006. The book presents 26 revised full papers. Among traditional topics addressed are spatial representations and data structures, spatial and temporal reasoning, computational geometry, spatial analysis, and databases. Many papers deal with navigation, interoperability, dynamic modeling, ontology, and semantics. Geosensors, location privacy, social issues and GI research networks rank among the new directions covered.
Historical maps are fascinating documents and a valuable source of information for scientists of various disciplines. Many of these maps are available as scanned bitmap images, but in order to make them searchable in useful ways, a structured representation of the contained information is desirable. This book deals with the extraction of spatial information from historical maps. This cannot be expected to be solved fully automatically (since it involves difficult semantics), but is also too tedious to be done manually at scale. The methodology used in this book combines the strengths of both computers and humans: it describes efficient algorithms to largely automate information extraction tasks and pairs these algorithms with smart user interactions to handle what is not understood by the algorithm. The effectiveness of this approach is shown for various kinds of spatial documents from the 16th to the early 20th century.
For the fourth consecutive year, the Association of Geographic Infor- tion Laboratories for Europe (AGILE) promoted the edition of a book with the collection of the scientific papers that were submitted as full-papers to the AGILE annual international conference. Those papers went through a th competitive review process. The 13 AGILE conference call for fu- papers of original and unpublished fundamental scientific research resulted in 54 submissions, of which 21 were accepted for publication in this - lume (acceptance rate of 39%). Published in the Springer Lecture Notes in Geoinformation and Car- th graphy, this book is associated to the 13 AGILE Conference on G- graphic Information Science...
The use of computers in cartography has made it easier for map makers to transform data from one map projection to another and experiment with alternative representations of geographical data. This has created new challenges and opportunities for map projection scientists. Small Scale Map Projection Design focuses on numerical map projection research and is written from the perspective of the map projection user. It demonstrates how advances in the measurement of map projection distortion and in the development of low error map projections can help map makers decide what type of map projection is best for their purpose, and shows how they can eventually design their own map projections.
Ever since its inception, the Web has changed the landscape of human experiences on how we interact with one another and data through service infrastructures via various computing devices. This interweaving environment is now becoming ever more embedded into devices and systems that integrate seamlessly on how we live, both in our working or leisure time. For this volume, King and Baeza-Yates selected some pioneering and cutting-edge research work that is pointing to the future of the Web. Based on the Workshop Track of the 17th International World Wide Web Conference (WWW2008) in Beijing, they selected the top contributions and asked the authors to resubmit their work with a minimum of one ...