You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
An authoritative collection of optimal techniques for producing and characterizing the immunologically active cells and effector molecules now gaining wide use in the clinical treatment of patients. Taking advantage of the latest technologies, the authors present readily reproducible experimental protocols for the study of dendritic cells, T cells, monoclonal antibodies, and bone marrow transplantation. The emphasis is on preclinicical and clinical applications and on the progress of selected approaches in clinical trials. Additional chapters cover the molecular definition of target antigens, mathematical modeling approaches to immunotherapy, and the utilization of regulatory T cells. The protocols make it possible to study the adoptive transfer of tailored antigen-specific immune cells and to improve the clinical application of adoptive immunotherapy.
Embryonic stem cells have the ability to develop into virtually any cell in the body, and may have the potential to treat medical conditions such as diabetes and Parkinson's disease. In August 2001, President Bush announced that for the first time federal funds would be used to support research on human embryonic stem cells, but funding would be limited to 'existing stem cell lines'. The National Institutes of Health (NIH) has established the Human Embryonic Stem Cell Registry which lists stem cell lines that are eligible for use in federally funded research. Although 78 cell lines are listed, 21 embryonic stem cell lines are currently available. Scientists are concerned about the quality, l...
None