You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains the proceedings of the ICM 2018 satellite school and workshop K-theory conference in Argentina. The school was held from July 16–20, 2018, in La Plata, Argentina, and the workshop was held from July 23–27, 2018, in Buenos Aires, Argentina. The volume showcases current developments in K-theory and related areas, including motives, homological algebra, index theory, operator algebras, and their applications and connections. Papers cover topics such as K-theory of group rings, Witt groups of real algebraic varieties, coarse homology theories, topological cyclic homology, negative K-groups of monoid algebras, Milnor K-theory and regulators, noncommutative motives, the classification of C∗-algebras via Kasparov's K-theory, the comparison between full and reduced C∗-crossed products, and a proof of Bott periodicity using almost commuting matrices.
From the hell of Berlin as it fell at the end of WW2, follow the trail of a treasure of Nazi SS gold bullion to Indochina. Smuggled out of Berlin, as it fell to the Russian Red Army in 1945 by 5 young SS officers, who end up joining the French Foreign Legion, the gold is lost in South Vietnam. In 1968, after he is given a map to find the lost SS treasure, Mike Bennett returns to South Vietnam to search for the lost gold and his lost love. To succeed in this mission Bennett must fight the enemy from the North and battle the demons of the past to find the SS Treasure.
This volume contains the proceedings of the virtual conference on Cyclic Cohomology at 40: Achievements and Future Prospects, held from September 27–October 1, 2021 and hosted by the Fields Institute for Research in Mathematical Sciences, Toronto, ON, Canada. Cyclic cohomology, since its discovery forty years ago in noncommutative differential geometry, has become a fundamental mathematical tool with applications in domains as diverse as analysis, algebraic K-theory, algebraic geometry, arithmetic geometry, solid state physics and quantum field theory. The reader will find survey articles providing a user-friendly introduction to applications of cyclic cohomology in such areas as higher ca...
None
Luis Santalo Winter Schools are organized yearly by the Mathematics Department and the Santalo Mathematical Research Institute of the School of Exact and Natural Sciences of the University of Buenos Aires (FCEN). This volume contains the proceedings of the third Luis Santalo Winter School which was devoted to noncommutative geometry and held at FCEN July 26-August 6, 2010. Topics in this volume concern noncommutative geometry in a broad sense, encompassing various mathematical and physical theories that incorporate geometric ideas to the study of noncommutative phenomena. It explores connections with several areas including algebra, analysis, geometry, topology and mathematical physics. Burs...
Based on presentations given at the NordForsk Network Closing Conference “Operator Algebra and Dynamics,” held in Gjáargarður, Faroe Islands, in May 2012, this book features high quality research contributions and review articles by researchers associated with the NordForsk network and leading experts that explore the fundamental role of operator algebras and dynamical systems in mathematics with possible applications to physics, engineering and computer science. It covers the following topics: von Neumann algebras arising from discrete measured groupoids, purely infinite Cuntz-Krieger algebras, filtered K-theory over finite topological spaces, C*-algebras associated to shift spaces (o...
Since its inception 50 years ago, K-theory has been a tool for understanding a wide-ranging family of mathematical structures and their invariants: topological spaces, rings, algebraic varieties and operator algebras are the dominant examples. The invariants range from characteristic classes in cohomology, determinants of matrices, Chow groups of varieties, as well as traces and indices of elliptic operators. Thus K-theory is notable for its connections with other branches of mathematics. Noncommutative geometry develops tools which allow one to think of noncommutative algebras in the same footing as commutative ones: as algebras of functions on (noncommutative) spaces. The algebras in quest...
Body Memory, Metaphor and Movement is an interdisciplinary volume with contributions from philosophers, cognitive scientists, and movement therapists. Part one provides the phenomenologically grounded definition of body memory with its different typologies. Part two follows the aim to integrate phenomenology, conceptual metaphor theory, and embodiment approaches from the cognitive sciences for the development of appropriate empirical methods to address body memory. Part three inquires into the forms and effects of therapeutic work with body memory, based on the integration of theory, empirical findings, and clinical applications. It focuses on trauma treatment and the healing power of movement. The book also contributes to metaphor theory, application and research, and therefore addresses metaphor researchers and linguists interested in the embodied grounds of metaphor. Thus, it is of particular interest for researchers from the cognitive sciences, social sciences, and humanities as well as clinical practitioners.
A 2010 collection of survey articles by leading experts covering fundamental aspects of triangulated categories, as well as applications in algebraic geometry, representation theory, commutative algebra, microlocal analysis and algebraic topology. This is a valuable reference for experts and a useful introduction for graduate students entering the field.