You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Major strides have been made in face processing in the last ten years due to the fast growing need for security in various locations around the globe. A human eye can discern the details of a specific face with relative ease. It is this level of detail that researchers are striving to create with ever evolving computer technologies that will become our perfect mechanical eyes. The difficulty that confronts researchers stems from turning a 3D object into a 2D image. That subject is covered in depth from several different perspectives in this volume. Face Processing: Advanced Modeling and Methods begins with a comprehensive introductory chapter for those who are new to the field. A compendium ...
Human Identification Based on Gait is the first book to address gait as a biometric. Biometrics is now in a unique position where it affects most people's lives. This is especially true of "gait", which is one of the most recent biometrics. Recognizing people by the way they walk and run implies analyzing movement which, in turn, implies analyzing sequences of images, thus requiring memory and computational performance that became available only recently. Human Identification Based on Gait introduces developments from distinguished researchers within this relatively new area of biometrics. This book clearly establishes how human gait is biometric. Human Identification Based on Gait is structured to meet the needs of professionals in industry, as well as advanced-level students in computer science.
Academic Press Library in Signal Processing, Volume 6: Image and Video Processing and Analysis and Computer Vision is aimed at university researchers, post graduate students and R&D engineers in the industry, providing a tutorial-based, comprehensive review of key topics and technologies of research in both image and video processing and analysis and computer vision. The book provides an invaluable starting point to the area through the insight and understanding that it provides. With this reference, readers will quickly grasp an unfamiliar area of research, understand the underlying principles of a topic, learn how a topic relates to other areas, and learn of research issues yet to be resolved. - Presents a quick tutorial of reviews of important and emerging topics of research - Explores core principles, technologies, algorithms and applications - Edited and contributed by international leading figures in the field - Includes comprehensive references to journal articles and other literature upon which to build further, more detailed knowledge
Computer vision has made enormous progress in recent years, and its applications are multifaceted and growing quickly, while many challenges still remain. This book brings together a range of leading researchers to examine a wide variety of research directions, challenges, and prospects for computer vision and its applications. This book highlights various core challenges as well as solutions by leading researchers in the field. It covers such important topics as data-driven AI, biometrics, digital forensics, healthcare, robotics, entertainment and XR, autonomous driving, sports analytics, and neuromorphic computing, covering both academic and industry R&D perspectives. Providing a mix of breadth and depth, this book will have an impact across the fields of computer vision, imaging, and AI. Computer Vision: Challenges, Trends, and Opportunities covers timely and important aspects of computer vision and its applications, highlighting the challenges ahead and providing a range of perspectives from top researchers around the world. A substantial compilation of ideas and state-of-the-art solutions, it will be of great benefit to students, researchers, and industry practitioners.
This book presents a comprehensive treatise on Riemannian geometric computations and related statistical inferences in several computer vision problems. This edited volume includes chapter contributions from leading figures in the field of computer vision who are applying Riemannian geometric approaches in problems such as face recognition, activity recognition, object detection, biomedical image analysis, and structure-from-motion. Some of the mathematical entities that necessitate a geometric analysis include rotation matrices (e.g. in modeling camera motion), stick figures (e.g. for activity recognition), subspace comparisons (e.g. in face recognition), symmetric positive-definite matrices (e.g. in diffusion tensor imaging), and function-spaces (e.g. in studying shapes of closed contours).
Object detection is a basic visual identification problem in computer vision that has been explored extensively over the years. Visual object detection seeks to discover objects of specific target classes in a given image with pinpoint accuracy and apply a class label to each object instance. Object recognition strategies based on deep learning have been intensively investigated in recent years as a result of the remarkable success of deep learning-based image categorization. In this book, we go through in detail detector architectures, feature learning, proposal generation, sampling strategies, and other issues that affect detection performance. The book describes every newly proposed novel...
The four-volume set comprising LNCS volumes 3951/3952/3953/3954 constitutes the refereed proceedings of the 9th European Conference on Computer Vision, ECCV 2006. The 192 papers presented cover the entire range of current issues in computer vision. The papers are organized in topical sections on recognition, statistical models and visual learning, 3D reconstruction and multi-view geometry, energy minimization, tracking and motion, segmentation, shape from X, visual tracking, face detection and recognition, and more.
The Intelligence Community Studies Board of the National Academies of Sciences, Engineering, and Medicine convened a workshop on August 9-10, 2017 to examine challenges in machine generation of analytic products from multi-source data. Workshop speakers and participants discussed research challenges related to machine-based methods for generating analytic products and for automating the evaluation of these products, with special attention to learning from small data, using multi-source data, adversarial learning, and understanding the human-machine relationship. This publication summarizes the presentations and discussions from the workshop.
This book constitutes the refereed proceedings of the First International Conference on Pattern Recognition and Machine Intelligence, PReMI 2005, held in Kolkata, India in December 2005. The 108 revised papers presented together with 6 keynote talks and 14 invited papers were carefully reviewed and selected from 250 submissions. The papers are organized in topical sections on clustering, feature selection and learning, classification, neural networks and applications, fuzzy logic and applications, optimization and representation, image processing and analysis, video processing and computer vision, image retrieval and data mining, bioinformatics application, Web intelligence and genetic algorithms, as well as rough sets, case-based reasoning and knowledge discovery.
Statistical learning and analysis techniques have become extremely important today, given the tremendous growth in the size of heterogeneous data collections and the ability to process it even from physically distant locations. Recent advances made in the field of machine learning provide a strong framework for robust learning from the diverse corpora and continue to impact a variety of research problems across multiple scientific disciplines. The aim of this handbook is to familiarize beginners as well as experts with some of the recent techniques in this field.The Handbook is divided in two sections: Theory and Applications, covering machine learning, data analytics, biometrics, document recognition and security. - Very relevant to current research challenges faced in various fields - Self-contained reference to machine learning - Emphasis on applications-oriented techniques