You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Proceedings of the 30th Annual International Conference on Very Large Data Bases held in Toronto, Canada on August 31 - September 3 2004. Organized by the VLDB Endowment, VLDB is the premier international conference on database technology.
Data Warehousing and Knowledge Discovery technology is emerging as a key technology for enterprises that wish to improve their data analysis, decision support activities, and the automatic extraction of knowledge from data. The objective of the Third International Conference on Data Warehousing and Knowledge Discovery (DaWaK 2001) was to bring together researchers and practitioners to discuss research issues and experience in developing and deploying data warehousing and knowledge discovery systems, applications, and solutions. The conference focused on the logical and physical design of data warehousing and knowledge discovery systems. The scope of the papers covered the most recent and rel...
Provides a comprehensive textbook covering theory and practical examples for a course on data mining and data warehousing.
This handbook provides an overarching view of cyber security and digital forensic challenges related to big data and IoT environment, prior to reviewing existing data mining solutions and their potential application in big data context, and existing authentication and access control for IoT devices. An IoT access control scheme and an IoT forensic framework is also presented in this book, and it explains how the IoT forensic framework can be used to guide investigation of a popular cloud storage service. A distributed file system forensic approach is also presented, which is used to guide the investigation of Ceph. Minecraft, a Massively Multiplayer Online Game, and the Hadoop distributed fi...
This book presents the refereed proceedings of the Fifth International Conference on Extending Database Technology, EDBT'96, held in Avignon, France in March 1996. The 31 full revised papers included were selected from a total of 178 submissions; also included are some industrial-track papers, contributed by partners of several ESPRIT projects. The volume is organized in topical sections on data mining, active databases, design tools, advanced DBMS, optimization, warehousing, system issues, temporal databases, the web and hypermedia, performance, workflow management, database design, and parallel databases.
For more than 40 years, Computerworld has been the leading source of technology news and information for IT influencers worldwide. Computerworld's award-winning Web site (Computerworld.com), twice-monthly publication, focused conference series and custom research form the hub of the world's largest global IT media network.
Clustering is an important technique for discovering relatively dense sub-regions or sub-spaces of a multi-dimension data distribution. Clus tering has been used in information retrieval for many different purposes, such as query expansion, document grouping, document indexing, and visualization of search results. In this book, we address issues of cluster ing algorithms, evaluation methodologies, applications, and architectures for information retrieval. The first two chapters discuss clustering algorithms. The chapter from Baeza-Yates et al. describes a clustering method for a general metric space which is a common model of data relevant to information retrieval. The chapter by Guha, Rasto...
This book constitutes the refereed proceedings of the 10th European Conference on Genetic Programming, EuroGP 2007, held in Valencia, Spain in April 2007 colocated with EvoCOP 2007. The 21 revised plenary papers and 14 revised poster papers were carefully reviewed and selected from 71 submissions. The papers address fundamental and theoretical issues, along with a wide variety of papers dealing with different application areas.
Data profiling refers to the activity of collecting data about data, {i.e.}, metadata. Most IT professionals and researchers who work with data have engaged in data profiling, at least informally, to understand and explore an unfamiliar dataset or to determine whether a new dataset is appropriate for a particular task at hand. Data profiling results are also important in a variety of other situations, including query optimization, data integration, and data cleaning. Simple metadata are statistics, such as the number of rows and columns, schema and datatype information, the number of distinct values, statistical value distributions, and the number of null or empty values in each column. More...
What Is Data Mining Data mining is the process of extracting and detecting patterns in huge data sets by utilizing approaches that lie at the confluence of machine learning, statistical analysis, and database management systems. Data mining is an interdisciplinary subject of computer science and statistics with the overarching goal of extracting information from a data set and translating the information into a structure that is understandable for the sake of subsequent application. The "knowledge discovery in databases" (also known as "KDD") method includes an analysis step that is known as "data mining." In addition to the phase of raw analysis, it also includes aspects of database managem...