Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Lattice Structures on Banach Spaces
  • Language: en
  • Pages: 105

Lattice Structures on Banach Spaces

The general problem addressed in this work is to characterize the possible Banach lattice structures that a separable Banach space may have. The basic questions of uniqueness of lattice structure for function spaces have been studied before, but here the approach uses random measure representations for operators in a new way to obtain more powerful conclusions.

Random Perturbations of Hamiltonian Systems
  • Language: en
  • Pages: 97

Random Perturbations of Hamiltonian Systems

Random perturbations of Hamiltonian systems in Euclidean spaces lead to stochastic processes on graphs, and these graphs are defined by the Hamiltonian. In the case of white-noise type perturbations, the limiting process will be a diffusion process on the graph. Its characteristics are expressed through the Hamiltonian and the characteristics of the noise. Freidlin and Wentzell calculate the process on the graph under certain conditions and develop a technique which allows consideration of a number of asymptotic problems. The Dirichlet problem for corresponding elliptic equations with a small parameter are connected with boundary problems on the graph.

A Proof of the $q$-Macdonald-Morris Conjecture for $BC_n$
  • Language: en
  • Pages: 93

A Proof of the $q$-Macdonald-Morris Conjecture for $BC_n$

Macdonald and Morris gave a series of constant term [italic]q-conjectures associated with root systems. Selberg evaluated a multivariable beta-type integral which plays an important role in the theory of constant term identities associated with root systems. K. Aomoto recently gave a simple and elegant proof of a generalization of Selberg's integral. Kadell extended this proof to treat Askey's conjectured [italic]q-Selberg integral, which was proved independently by Habsieger. We use a constant term formulation of Aomoto's argument to treat the [italic]q-Macdonald-Morris conjecture for the root system [italic capitals]BC[subscript italic]n. We show how to obtain the required functional equations using only the q-transportation theory for [italic capitals]BC[subscript italic]n.

Axiomization of Passage from `Local' Structure to `Global' Object
  • Language: en
  • Pages: 121

Axiomization of Passage from `Local' Structure to `Global' Object

This paper offers a systematic approach to all mathematical theories with local/global behavior. To build objects with local and global aspects, on begins with a category of [script]C of allowed local structures, and somehow derives a category [script]C[superscript]gl of things which are 'locally' in [script]C. Some global objects, such as manifolds or schemes, can be represented as a sheaf of algebras on a topological base space; others, like algebraic spaces, are more technical. These theories share common structure--certain theorems on inverse limits, descent, and dependence on special class of morphism appear in all cases. Yet, classical proofs for universal properties proceed by case-by-case study. Separate examples require distinct arguments.

Brownian Motion on Nested Fractals
  • Language: en
  • Pages: 140

Brownian Motion on Nested Fractals

Lindstrom (U. of Oslo) constructs Brownian motion on a reasonably general class of self-similar fractals. He deals with diffusions, self-similar fractals, fractal Laplacians, asymptotic distribution of eigenvalues, nonstandard analysis. Annotation copyright Book News, Inc. Portland, Or.

Degree Theory for Equivariant Maps, the General $S^1$-Action
  • Language: en
  • Pages: 194

Degree Theory for Equivariant Maps, the General $S^1$-Action

In this paper, we consider general [italic]S1-actions, which may differ on the domain and on the range, with isotropy subspaces with one dimension more on the domain. In the special case of self-maps the [italic]S1-degree is given by the usual degree of the invariant part, while for one parameter [italic]S1-maps one has an integer for each isotropy subgroup different from [italic]S1. In particular we recover all the [italic]S1-degrees introduced in special cases by other authors and we are also able to interpret period doubling results on the basis of our [italic]S1-degree. The applications concern essentially periodic solutions of ordinary differential equations.

Associated Graded Algebra of a Gorenstein Artin Algebra
  • Language: en
  • Pages: 128

Associated Graded Algebra of a Gorenstein Artin Algebra

In 1904, Macaulay described the Hilbert function of the intersection of two plane curve branches: It is the sum of a sequence of functions of simple form. This monograph describes the structure of the tangent cone of the intersection underlying this symmetry. Iarrobino generalizes Macaulay's result beyond complete intersections in two variables to Gorenstein Artin algebras in an arbitrary number of variables. He shows that the tangent cone of a Gorenstein singularity contains a sequence of ideals whose successive quotients are reflexive modules. Applications are given to determining the multiplicity and orders of generators of Gorenstein ideals and to problems of deforming singular mapping germs. Also included are a survey of results concerning the Hilbert function of Gorenstein Artin algebras and an extensive bibliography.

Chapter 16 of Ramanujan's Second Notebook: Theta-Functions and $q$-Series
  • Language: en
  • Pages: 99

Chapter 16 of Ramanujan's Second Notebook: Theta-Functions and $q$-Series

The first part of Chapter 16 in Ramanujan's second notebook is devoted to q-series. Several of the results obtained by Ramanujan are classical, but many are new. In particular, certain elegant q-continued fraction expansions have not appeared heretofore in print. In the remainder of this chapter, Ramanujan develops the theory of the classical theta-functions in a manner different from his nineteenth century predecessors such as Jacobi. Although many of Ramanujan's discoveries about theta-functions are well-known, several new results are also to be found.

Separatrix Surfaces and Invariant Manifolds of a Class of Integrable Hamiltonian Systems and Their Perturbations
  • Language: en
  • Pages: 206

Separatrix Surfaces and Invariant Manifolds of a Class of Integrable Hamiltonian Systems and Their Perturbations

This work presents a study of the foliations of the energy levels of a class of integrable Hamiltonian systems by the sets of constant energy and angular momentum. This includes a classification of the topological bifurcations and a dynamical characterization of the criticalleaves (separatrix surfaces) of the foliation. Llibre and Nunes then consider Hamiltonain perturbations of this class of integrable Hamiltonians and give conditions for the persistence of the separatrix structure of the foliations and for the existence of transversal ejection-collision orbits of the perturbed system. Finally, they consider a class of non-Hamiltonian perturbations of a family of integrable systems of the type studied earlier and prove the persistence of "almost all" the tori and cylinders that foliate the energy levels of the unperturbed system as a consequence of KAM theory.

The Continued Fractions Found in the Unorganized Portions of Ramanujan's Notebooks
  • Language: en
  • Pages: 82

The Continued Fractions Found in the Unorganized Portions of Ramanujan's Notebooks

Among his thirty-three published papers, Ramanujan had only one continued fraction, the Rogers-Ramanujan continued fraction. However, his notebooks contain over 100 results on continued fractions. At the end of his second notebook are 100 pages of unorganized material, and the third notebook comprises thirty-three pages of disorganized results. In these 133 pages of material are approximately sixty theorems on continued fractions, most of them new results. In this monograph, the authors discuss and prove each of these theorems. Aimed at those interested in Ramanujan and his work, this monograph will be of special interest to those who work in continued fractions q -series, special function, theta-functions, and combinatorics. The work is likely to be of interest to those in number theory as well. The only required background is some knowledge of continued fractions and a course in complex analysis.