You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This paper deals with the two broad questions of how 3-manifold groups imbed in one another and how such imbeddings relate to any corresponding [lowercase Greek]Pi1-injective maps. In particular, we are interested in 1) determining which 3-manifold groups are no cohopfian, that is, which 3-manifold groups imbed properly in themselves, 2) determining the knot subgroups of a knot group, and 3) determining when surgery on a knot [italic]K yields a lens (or "lens-like") space and the relationship of such a surgery to the knot-subgroup structure of [lowercase Greek]Pi1([italic]S3 - [italic]K). Our work requires the formulation of a deformation theorem for [lowercase Greek]Pi1-injective maps between certain kinds of Haken manifolds and the development of some algebraic tools.
The authors' argument is a spiritual descendent of earlier work of Adler and Weiss, Sinaĭ, and Bowen, and involves a close study of triangulations. The discussion is long and technical, but the outline of the proof is sketched clearly in Section 1 for the special case of [italic]F an expanding immersion. A concluding section lists problems on hyperbolic sets, Markov partitions, and related matters; remarks on topological invariants, including the conjectured vanishing of Pontryagin classes for manifolds supporting Anosov diffeomorphisms, may be of particular interest.
Among his thirty-three published papers, Ramanujan had only one continued fraction, the Rogers-Ramanujan continued fraction. However, his notebooks contain over 100 results on continued fractions. At the end of his second notebook are 100 pages of unorganized material, and the third notebook comprises thirty-three pages of disorganized results. In these 133 pages of material are approximately sixty theorems on continued fractions, most of them new results. In this monograph, the authors discuss and prove each of these theorems. Aimed at those interested in Ramanujan and his work, this monograph will be of special interest to those who work in continued fractions q -series, special function, theta-functions, and combinatorics. The work is likely to be of interest to those in number theory as well. The only required background is some knowledge of continued fractions and a course in complex analysis.
At first, this volume was intended to be an investigation of symbolic blow-up rings for prime ideals defining curve singularities. The motivation for that has come from the recent 3-dimensional counterexamples to Cowsik's question, given by the authors and Watanabe: it has to be helpful, for further researches on Cowsik's question and a related problem of Kronecker, to generalize their methods to those of a higher dimension. However, while the study was progressing, it proved apparent that the framework of Part I still works, not only for the rather special symbolic blow-up rings but also in the study of Rees algebras R(F) associated to general filtrations F = {F[subscript]n} [subscript]n [subscript][set membership symbol][subscript bold]Z of ideals. This observation is closely explained in Part II of this volume, as a general ring-theory of Rees algebras R(F). We are glad if this volume will be a new starting point for the further researchers on Rees algebras R(F) and their associated graded rings G(F).
This book uses a powerful new technique, tight closure, to provide insight into many different problems that were previously not recognized as related. The authors develop the notion of weakly Cohen-Macaulay rings or modules and prove some very general acyclicity theorems. These theorems are applied to the new theory of phantom homology, which uses tight closure techniques to show that certain elements in the homology of complexes must vanish when mapped to well-behaved rings. These ideas are used to strengthen various local homological conjectures. Initially, the authors develop the theory in positive characteristic, but it can be extended to characteristic 0 by the method of reduction to characteristic $p$. The book would be suitable for use in an advanced graduate course in commutative algebra.
This work provides a detailed exposition of a classical topic from a very recent viewpoint. Friedlander and Mazur describe some foundational aspects of ``Lawson homology'' for complex projective algebraic varieties, a homology theory defined in terms of homotopy groups of spaces of algebraic cycles. Attention is paid to methods of group completing abelian topological monoids. The authors study properties of Chow varieties, especially in connection with algebraic correspondences relating algebraic varieties. Operations on Lawson homology are introduced and analysed. These operations lead to a filtration on the singular homology of algebraic varieties, which is identified in terms of correspondences and related to classical filtrations of Hodge and Grothendieck.
This work studies abelian branched coverings of smooth complex projective surfaces from the topological viewpoint. Geometric information about the coverings (such as the first Betti numbers of a smooth model or intersections of embedded curves) is related to topological and combinatorial information about the base space and branch locus. Special attention is given to examples in which the base space is the complex projective plane and the branch locus is a configuration of lines.
This volume is based on talks given at the Conference in Honor of the 60th Anniversary of Alberto Verjovsky, a prominent mathematician in Latin America who made significant contributions to dynamical systems, geometry, and topology. Articles in the book present recent work in these areas and are suitable for graduate students and research mathematicians.
Let [Fraktur lowercase]g be a complex simple Lie algebra of classical type, [italic capital]U([Fraktur lowercase]g) its enveloping algebra. We classify the completely prime maximal spectrum of [italic capital]U([Fraktur lowercase]g). We also construct some interesting algebra extensions of primitive quotients of [italic capital]U([Fraktur lowercase]g), and compute their Goldie ranks, lengths as bimodules, and characteristic cycles. Finally, we study the relevance of these algebras to D. Vogan's program of "quantizing" covers of nilpotent orbits [script]O in [Fraktur lowercase]g[superscript]*.