You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume presents articles originating from invited talks at an exciting international conference held at The Fields Institute in Toronto celebrating the sixtieth birthday of the renowned mathematician, Vladimir Arnold. Experts from the world over--including several from "Arnold's school"--gave illuminating talks and lively poster sessions. The presentations focused on Arnold's main areas of interest: singularity theory, the theory of curves, symmetry groups, dynamical systems, mechanics, and related areas of mathematics. The book begins with notes of three lectures by V. Arnold given in the framework of the Institute's Distinguished Lecturer program. The topics of the lectures are: (1) From Hilbert's Superposition Problem to Dynamical Systems (2) Symplectization, Complexification, and Mathematical Trinities (3) Topological Problems in Wave Propagation Theory and Topological Economy Principle in Algebraic Geometry. Arnold's three articles include insightful comments on Russian and Western mathematics and science. Complementing the first is Jurgen Moser's "Recollections", concerning some of the history of KAM theory.
This review volume, co-edited by Nobel laureate G Ertl, provides a broad overview on current studies in the understanding of design and control of complex chemical systems of various origins, on scales ranging from single molecules and nano-phenomena to macroscopic chemical reactors. Self-organizational behavior and the emergence of coherent collective dynamics in reactionOCodiffusion systems, reactive soft matter and chemical networks are covered. Special attention is paid to the applications in molecular cell biology and to the problems of biological evolution, synthetic biology and design of artificial living cells.Starting with a detailed introduction on the history of research on complex chemical systems, its current state of the art and perspectives, the book comprises 19 chapters that survey the current progress in particular research fields. The reviews, prepared by leading international experts, yield together a fascinating picture of a rapidly developing research discipline that brings chemical engineering to new frontiers."
The behaviour of many complex materials extends over time- and lengthscales well beyond those that can normally be described using standard molecular dynamics or Monte Carlo simulation techniques. As progress is coming more through refined simulation methods than from increased computer power, this volume is intended as both an introduction and a review of all relevant modern methods that will shape molecular simulation in the forthcoming decade. Written as a set of tutorial reviews, the book will be of use to specialists and nonspecialists alike.
This book presents the lecture notes and articles from the workshop on hydrodynamic limits held at The Fields Institute (Toronto). The first part of the book contains the notes from the mini-course given by Professor S. R. S. Varadhan. The second part contains research articles reviewing the diverse progress in the study of hydrodynamic limits and related areas. This book offers a comprehensive introduction to the theory and its techniques, including entropy and relative entropy methods, large deviation estimates, and techniques in nongradient systems. This book, especially the lectures of Part I, could be used as a text for an advanced graduate course in hydrodynamic limits and interacting particle systems.
This series, Advances in Chemical Physics, provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline.
A specially written review of all areas of noise and nonlinear in natural environments.
The escape from metastable states via noise-assisted hopping and/or tunneling is pivotal to many scientific disciplines. It impacts on such diverse physical, chemical and biological processes as diffusion in solids, chemical reactions, nucleation phenomena and transfer of matter and information in biological systems. This volume surveys recent developments in the rate theory of both equilibrium and nonequilibrium processes. The understanding of the classical and quantum-mechanical concepts of this theory is deepened and extended in order to cope with various problems which, in particular, arise in complex systems. A wide range of applications are discussed such as correlated hops in periodic potentials, fluctuating barriers, transitions to limit cycles, discrete time dynamics, random walks on selfsimilar structures, and nonexponential decay in disordered systems is covered and profoundly discussed. For research workers and graduate students in chemistry, physics and biology with an interest in reaction rate theory.
Focusing on the theme of point counting and explicit arithmetic on the Jacobians of curves over finite fields the topics covered in this volume include Schoof's $\ell$-adic point counting algorithm, the $p$-adic algorithms of Kedlaya and Denef-Vercauteren, explicit arithmetic on the Jacobians of $C_{ab}$ curves and zeta functions.
This book covers a wide range of phenomena in the natural sciences dominated by notions of universality and renormalization. The contributions in this volume are equally broad in their approach to these phenomena, offering the mathematical as well as the perspective of the applied sciences. They explore renormalization theory in quantum field theory and statistical physics, and its connections to modern mathematics as well as physics on scales from the microscopic to the macroscopic. Information for our distributors: Titles in this series are co-published with the Fields Institute for Research in Mathematical Sciences (Toronto, Ontario, Canada).
This volume, like those prior to it, features chapters by experts in various fields of computational chemistry. Volume 27 covers brittle fracture, molecular detailed simulations of lipid bilayers, semiclassical bohmian dynamics, dissipative particle dynamics, trajectory-based rare event simulations, and understanding metal/metal electrical contact conductance from the atomic to continuum scales. Also included is a chapter on career opportunities in computational chemistry and an appendix listing the e-mail addresses of more than 2500 people in that discipline. FROM REVIEWS OF THE SERIES "Reviews in Computational Chemistry remains the most valuable reference to methods and techniques in computational chemistry." —JOURNAL OF MOLECULAR GRAPHICS AND MODELLING "One cannot generally do better than to try to find an appropriate article in the highly successful Reviews in Computational Chemistry. The basic philosophy of the editors seems to be to help the authors produce chapters that are complete, accurate, clear, and accessible to experimentalists (in particular) and other nonspecialists (in general)." —JOURNAL OF THE AMERICAN CHEMICAL SOCIETY