You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is an evolution from my book A First Course in Information Theory published in 2002 when network coding was still at its infancy. The last few years have witnessed the rapid development of network coding into a research ?eld of its own in information science. With its root in infor- tion theory, network coding has not only brought about a paradigm shift in network communications at large, but also had signi?cant in?uence on such speci?c research ?elds as coding theory, networking, switching, wireless c- munications,distributeddatastorage,cryptography,andoptimizationtheory. While new applications of network coding keep emerging, the fundamental - sults that lay the foundation of the...
This book provides an up-to-date introduction to information theory. In addition to the classical topics discussed, it provides the first comprehensive treatment of the theory of I-Measure, network coding theory, Shannon and non-Shannon type information inequalities, and a relation between entropy and group theory. ITIP, a software package for proving information inequalities, is also included. With a large number of examples, illustrations, and original problems, this book is excellent as a textbook or reference book for a senior or graduate level course on the subject, as well as a reference for researchers in related fields.
Provides a tutorial on the basics of network coding theory. Divided into two parts, this book presents a unified framework for understanding the basic notions and fundamental results in network coding. It is aimed at students, researchers and practitioners working in networking research.
This book discusses an efficient random linear network coding scheme, called BATched Sparse code, or BATS code, which is proposed for communication through multi-hop networks with packet loss. Multi-hop wireless networks have applications in the Internet of Things (IoT), space, and under-water network communications, where the packet loss rate per network link is high, and feedbacks have long delays and are unreliable. Traditional schemes like retransmission and fountain codes are not sufficient to resolve the packet loss so that the existing communication solutions for multi-hop wireless networks have either long delay or low throughput when the network length is longer than a few hops. The...
When the 50th anniversary of the birth of Information Theory was celebrated at the 1998 IEEE International Symposium on Informa tion Theory in Boston, there was a great deal of reflection on the the year 1993 as a critical year. As the years pass and more perspec tive is gained, it is a fairly safe bet that we will view 1993 as the year when the "early years" of error control coding came to an end. This was the year in which Berrou, Glavieux and Thitimajshima pre sented "Near Shannon Limit Error-Correcting Coding and Decoding: Turbo Codes" at the International Conference on Communications in Geneva. In their presentation, Berrou et al. claimed that a combi nation of parallel concatenation an...
An introduction to information theory for discrete random variables. Classical topics and fundamental tools are presented along with three selected advanced topics. Yeung (Chinese U. of Hong Kong) presents chapters on information measures, zero-error data compression, weak and strong typicality, the I-measure, Markov structures, channel capacity, rate distortion theory, Blahut-Arimoto algorithms, information inequalities, and Shannon-type inequalities. The advanced topics included are single-source network coding, multi-source network coding, and entropy and groups. Annotation copyrighted by Book News, Inc., Portland, OR.
Electrical Engineering/Communications/Information Theory "The Berlekamp article alone will make this book worth having." --David Forney, Vice President, Motorola Codex Reed-Solomon Codes and Their Applications Edited by Stephen B. Wicker, Georgia Institute of Technology and Vijay K. Bhargava, University of Victoria On the Voyager spacecraft, they were responsible for sending clear pictures of the planets back to earth. They have also played a key role in the digital audio revolution. They are Reed-Solomon error codes: the extremely powerful codes that provide critical error control for many different types of digital communications systems. This outstanding collection of thirteen original ar...
Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independ...
This comprehensive treatment of network information theory and its applications provides the first unified coverage of both classical and recent results. With an approach that balances the introduction of new models and new coding techniques, readers are guided through Shannon's point-to-point information theory, single-hop networks, multihop networks, and extensions to distributed computing, secrecy, wireless communication, and networking. Elementary mathematical tools and techniques are used throughout, requiring only basic knowledge of probability, whilst unified proofs of coding theorems are based on a few simple lemmas, making the text accessible to newcomers. Key topics covered include successive cancellation and superposition coding, MIMO wireless communication, network coding, and cooperative relaying. Also covered are feedback and interactive communication, capacity approximations and scaling laws, and asynchronous and random access channels. This book is ideal for use in the classroom, for self-study, and as a reference for researchers and engineers in industry and academia.
The latest edition of this classic is updated with new problem sets and material The Second Edition of this fundamental textbook maintains the book's tradition of clear, thought-provoking instruction. Readers are provided once again with an instructive mix of mathematics, physics, statistics, and information theory. All the essential topics in information theory are covered in detail, including entropy, data compression, channel capacity, rate distortion, network information theory, and hypothesis testing. The authors provide readers with a solid understanding of the underlying theory and applications. Problem sets and a telegraphic summary at the end of each chapter further assist readers. The historical notes that follow each chapter recap the main points. The Second Edition features: * Chapters reorganized to improve teaching * 200 new problems * New material on source coding, portfolio theory, and feedback capacity * Updated references Now current and enhanced, the Second Edition of Elements of Information Theory remains the ideal textbook for upper-level undergraduate and graduate courses in electrical engineering, statistics, and telecommunications.