You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The idea of the book is to present a text that is useful for both students of quantitative sciences and practitioners who work with univariate or multivariate probabilistic models. Since the text should also be suitable for self-study, excessive formalism is avoided though mathematical rigor is retained. A deeper insight into the topics is provided by detailed examples and illustrations. The book covers the standard content of a course in probability and statistics. However, the second edition includes two new chapters about distribution theory and exploratory data analysis. The first-mentioned chapter certainly goes beyond the standard material. It is presented to reflect the growing practical importance of developing new distributions. The second new chapter studies intensively one- and bidimensional concepts like assymetry, kurtosis, correlation and determination coefficients. In particular, examples are intended to enable the reader to take a critical look at the appropriateness of the geometrically motivated concepts.
This monograph deals with mathematical constructions that are foundational in such an important area of data mining as pattern recognition. By using combinatorial and graph theoretic techniques, a closer look is taken at infeasible systems of linear inequalities, whose generalized solutions act as building blocks of geometric decision rules for pattern recognition. Infeasible systems of linear inequalities prove to be a key object in pattern recognition problems described in geometric terms thanks to the committee method. Such infeasible systems of inequalities represent an important special subclass of infeasible systems of constraints with a monotonicity property – systems whose multi-in...
Most environmental data involve a large degree of complexity and uncertainty. Environmental Data Analysis is created to provide modern quantitative tools and techniques designed specifically to meet the needs of environmental sciences and related fields. This book has an impressive coverage of the scope. Main techniques described in this book are models for linear and nonlinear environmental systems, statistical & numerical methods, data envelopment analysis, risk assessments and life cycle assessments. These state-of-the-art techniques have attracted significant attention over the past decades in environmental monitoring, modeling and decision making. Environmental Data Analysis explains ca...
This textbook is devoted to the general asymptotic theory of statistical experiments. Local asymptotics for statistical models in the sense of local asymptotic (mixed) normality or local asymptotic quadraticity make up the core of the book. Numerous examples deal with classical independent and identically distributed models and with stochastic processes. The book can be read in different ways, according to possibly different mathematical preferences of the reader. One reader may focus on the statistical theory, and thus on the chapters about Gaussian shift models, mixed normal and quadratic models, and on local asymptotics where the limit model is a Gaussian shift or a mixed normal or a quad...
This book is intended as an introduction to Probability Theory and Mathematical Statistics for students in mathematics, the physical sciences, engineering, and related fields. It is based on the author’s 25 years of experience teaching probability and is squarely aimed at helping students overcome common difficulties in learning the subject. The focus of the book is an explanation of the theory, mainly by the use of many examples. Whenever possible, proofs of stated results are provided. All sections conclude with a short list of problems. The book also includes several optional sections on more advanced topics. This textbook would be ideal for use in a first course in Probability Theory. Contents: Probabilities Conditional Probabilities and Independence Random Variables and Their Distribution Operations on Random Variables Expected Value, Variance, and Covariance Normally Distributed Random Vectors Limit Theorems Mathematical Statistics Appendix Bibliography Index
Contributors from twenty-two nations address various projects in their native countries to either develop, demonstrate, or facilitate the adoption of cleaner technologies and cleaner products. Reviewing the environmental situation in their respective countries and discussing the development and adoption of pollution prevention technologies, the authors provide thought-provoking and incisive treatments of the subject. An extremely comprehensive index enables the reader to retrieve focus on the information of interest quickly and efficiently.
This accessible and easy-to-read book provides many examples to illustrate diverse topics in probability and statistics, from initial concepts up to advanced calculations. Special attention is devoted e.g. to independency of events, inequalities in probability and functions of random variables. The book is directed to students of mathematics, statistics, engineering, and other quantitative sciences, in particular to readers who need or want to learn by self-study. The author is convinced that sophisticated examples are more useful for the student than a lengthy formalism treating the greatest possible generality. Contents: Mathematics revision Introduction to probability Finite sample spaces Conditional probability and independence One-dimensional random variables Functions of random variables Bi-dimensional random variables Characteristics of random variables Discrete probability models Continuous probability models Generating functions in probability Sums of many random variables Samples and sampling distributions Estimation of parameters Hypothesis tests