You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book mainly serves as an elementary, self-contained introduction to several important aspects of the theory of global solutions to initial value problems for nonlinear evolution equations. The book employs the classical method of continuation of local solutions with the help of a priori estimates obtained for small data. The existence and uniqueness of small, smooth solutions that are defined for all values of the time parameter are investigated. Moreover, the asymptotic behaviour of the solutions is described as time tends to infinity. The methods for nonlinear wave equations are discussed in detail. Other examples include the equations of elasticity, heat equations, the equations of thermoelasticity, Schrödinger equations, Klein-Gordon equations, Maxwell equations and plate equations. To emphasize the importance of studying the conditions under which small data problems offer global solutions, some blow-up results are briefly described. Moreover, the prospects for corresponding initial boundary value problems and for open questions are provided. In this second edition, initial-boundary value problems in waveguides are additionally considered.
Although the study of classical thermoelasticity has provided information on linear systems, only recently have results on the asymptotic behavior completed our basic understanding of the generic behavior of solutions. Through systematic work that began in the 80s, we now also understand the basic features of nonlinear systems. Yet some questions remain open, and the field has lacked a comprehensive survey that explores these past results and presents recent developments. Evolution Equations in Thermoelasticity presents a modern treatment of initial value problems and of initial boundary value problems in both linear and nonlinear thermoelasticity, in one- and multi-dimensional spatial configurations. The authors provide the first self-contained presentation of the subject that offers both introductory parts accessible to graduate students and sophisticated sections valuable to experts.
The proceedings of a summer school held in 2015 whose theme was long time behavior and control of evolution equations.
The aim of this proceeding is addressed to present recent developments of the mathematical research on the Navier-Stokes equations, the Euler equations and other related equations. In particular, we are interested in such problems as: 1) existence, uniqueness and regularity of weak solutions2) stability and its asymptotic behavior of the rest motion and the steady state3) singularity and blow-up of weak and strong solutions4) vorticity and energy conservation5) fluid motions around the rotating axis or outside of the rotating body6) free boundary problems7) maximal regularity theorem and other abstract theorems for mathematical fluid mechanics.
This book presents recent results on nonlinear evolutionary fluid equations such as the compressible (radiative) magnetohydrodynamics (MHD) equations, compressible viscous micropolar fluid equations, the full non-Newtonian fluid equations and non-autonomous compressible Navier-Stokes equations. These types of partial differential equations arise in many fields of mathematics, but also in other branches of science such as physics and fluid dynamics. This book will be a valuable resource for graduate students and researchers interested in partial differential equations, and will also benefit practitioners in physics and engineering.