Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Microlocal Methods in Mathematical Physics and Global Analysis
  • Language: en
  • Pages: 147

Microlocal Methods in Mathematical Physics and Global Analysis

Microlocal analysis is a field of mathematics that was invented in the mid-20th century for the detailed investigation of problems from partial differential equations, which incorporated and made rigorous many ideas that originated in physics. Since then it has grown to a powerful machine which is used in global analysis, spectral theory, mathematical physics and other fields, and its further development is a lively area of current mathematical research. In this book extended abstracts of the conference 'Microlocal Methods in Mathematical Physics and Global Analysis', which was held at the University of Tübingen from the 14th to the 18th of June 2011, are collected.​

Nonlinear Dispersive Waves and Fluids
  • Language: en
  • Pages: 290

Nonlinear Dispersive Waves and Fluids

This volume contains the proceedings of the AMS Special Session on Spectral Calculus and Quasilinear Partial Differential Equations and the AMS Special Session on PDE Analysis on Fluid Flows, which were held in January 2017 in Atlanta, Georgia. These two sessions shared the underlying theme of the analysis aspect of evolutionary PDEs and mathematical physics. The articles address the latest trends and perspectives in the area of nonlinear dispersive equations and fluid flows. The topics mainly focus on using state-of-the-art methods and techniques to investigate problems of depth and richness arising in quantum mechanics, general relativity, and fluid dynamics.

Computing Qualitatively Correct Approximations of Balance Laws
  • Language: en
  • Pages: 346

Computing Qualitatively Correct Approximations of Balance Laws

Substantial effort has been drawn for years onto the development of (possibly high-order) numerical techniques for the scalar homogeneous conservation law, an equation which is strongly dissipative in L1 thanks to shock wave formation. Such a dissipation property is generally lost when considering hyperbolic systems of conservation laws, or simply inhomogeneous scalar balance laws involving accretive or space-dependent source terms, because of complex wave interactions. An overall weaker dissipation can reveal intrinsic numerical weaknesses through specific nonlinear mechanisms: Hugoniot curves being deformed by local averaging steps in Godunov-type schemes, low-order errors propagating alon...

Fifth International Conference on Mathematical and Numerical Aspects of Wave Propagation
  • Language: en
  • Pages: 1062

Fifth International Conference on Mathematical and Numerical Aspects of Wave Propagation

  • Type: Book
  • -
  • Published: 2000-01-01
  • -
  • Publisher: SIAM

This conference was held in Santiago de Compostela, Spain, July 10-14, 2000. This volume contains papers presented at the conference covering a broad range of topics in theoretical and applied wave propagation in the general areas of acoustics, electromagnetism, and elasticity. Both direct and inverse problems are well represented. This volume, along with the three previous ones, presents a state-of-the-art primer for research in wave propagation. The conference is conducted by the Institut National de Recherche en Informatique et en Automatique with the cooperation of SIAM.

Nonlinear Dispersive Equations
  • Language: en
  • Pages: 596

Nonlinear Dispersive Equations

Nonlinear Dispersive Equations are partial differential equations that naturally arise in physical settings where dispersion dominates dissipation, notably hydrodynamics, nonlinear optics, plasma physics and Bose-Einstein condensates. The topic has traditionally been approached in different ways, from the perspective of modeling of physical phenomena, to that of the theory of partial differential equations, or as part of the theory of integrable systems. This monograph offers a thorough introduction to the topic, uniting the modeling, PDE and integrable systems approaches for the first time in book form. The presentation focuses on three "universal" families of physically relevant equations ...

Geometric Numerical Integration and Schrödinger Equations
  • Language: en
  • Pages: 152

Geometric Numerical Integration and Schrödinger Equations

The goal of geometric numerical integration is the simulation of evolution equations possessing geometric properties over long periods of time. Of particular importance are Hamiltonian partial differential equations typically arising in application fields such as quantum mechanics or wave propagation phenomena. They exhibit many important dynamical features such as energy preservation and conservation of adiabatic invariants over long periods of time. In this setting, a natural question is how and to which extent the reproduction of such long-time qualitative behavior can be ensured by numerical schemes. Starting from numerical examples, these notes provide a detailed analysis of the Schrodinger equation in a simple setting (periodic boundary conditions, polynomial nonlinearities) approximated by symplectic splitting methods. Analysis of stability and instability phenomena induced by space and time discretization are given, and rigorous mathematical explanations are provided for them. The book grew out of a graduate-level course and is of interest to researchers and students seeking an introduction to the subject matter.

Semi-classical Analysis For Nonlinear Schrodinger Equations: Wkb Analysis, Focal Points, Coherent States (Second Edition)
  • Language: en
  • Pages: 367

Semi-classical Analysis For Nonlinear Schrodinger Equations: Wkb Analysis, Focal Points, Coherent States (Second Edition)

The second edition of this book consists of three parts. The first one is dedicated to the WKB methods and the semi-classical limit before the formation of caustics. The second part treats the semi-classical limit in the presence of caustics, in the special geometric case where the caustic is reduced to a point (or to several isolated points). The third part is new in this edition, and addresses the nonlinear propagation of coherent states. The three parts are essentially independent.Compared with the first edition, the first part is enriched by a new section on multiphase expansions in the case of weakly nonlinear geometric optics, and an application related to this study, concerning instability results for nonlinear Schrödinger equations in negative order Sobolev spaces.The third part is an overview of results concerning nonlinear effects in the propagation of coherent states, in the case of a power nonlinearity, and in the richer case of Hartree-like nonlinearities. It includes explicit formulas of an independent interest, such as generalized Mehler's formula, generalized lens transform.

Discrete and Continuous Dynamical Systems
  • Language: en
  • Pages: 814

Discrete and Continuous Dynamical Systems

  • Type: Book
  • -
  • Published: 2008
  • -
  • Publisher: Unknown

None

Harmonic Analysis And Wave Equations
  • Language: en
  • Pages: 220

Harmonic Analysis And Wave Equations

This book is a collection of lecture notes for the LIASFMA School and Workshop on 'Harmonic Analysis and Wave Equations' which was held on May 8-18, 2017 at Fudan University, in Shanghai, China. The aim of the LIASFMA School and Workshop is to bring together Chinese and French experts to discuss and dissect recent progress in these related fields; and to disseminate state of art, new knowledge and new concepts, to graduate students and junior researchers.The book provides the readers with a unique and valuable opportunity to learn from and communicate with leading experts in nonlinear wave-type equations. The readers will witness the major development with the introduction of modern harmonic analysis and related techniques.

Stationary and Time Dependent Gross-Pitaevskii Equations
  • Language: en
  • Pages: 192

Stationary and Time Dependent Gross-Pitaevskii Equations

This volume looks at the Gross-Pitaevskii equation, an example of a defocusing nonlinear Schrodinger equation, which is a model for phenomena such as the Bose-Einstein condensation of ultra cold atomic gases, the superfluidity of Helium II, and the 'dark solitons' of nonlinear optics.